派博傳思國(guó)際中心

標(biāo)題: Titlebook: Attractors Under Discretisation; Xiaoying Han,Peter Kloeden Book 2017 The Author(s) 2017 One step numerical schemes.Autonomous dynamicl sy [打印本頁(yè)]

作者: 古生物學(xué)    時(shí)間: 2025-3-21 17:22
書目名稱Attractors Under Discretisation影響因子(影響力)




書目名稱Attractors Under Discretisation影響因子(影響力)學(xué)科排名




書目名稱Attractors Under Discretisation網(wǎng)絡(luò)公開度




書目名稱Attractors Under Discretisation網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Attractors Under Discretisation被引頻次




書目名稱Attractors Under Discretisation被引頻次學(xué)科排名




書目名稱Attractors Under Discretisation年度引用




書目名稱Attractors Under Discretisation年度引用學(xué)科排名




書目名稱Attractors Under Discretisation讀者反饋




書目名稱Attractors Under Discretisation讀者反饋學(xué)科排名





作者: 命令變成大炮    時(shí)間: 2025-3-21 20:40

作者: 陪審團(tuán)    時(shí)間: 2025-3-22 02:02
2191-8198 dle points in autonomous systems.Introduces cutting-edge wor.This work focuses on the preservation of attractors and saddle points of ordinary differential equations under discretisation. In the 1980s, key results for autonomous ordinary differential equations were obtained – by Beyn for saddle poin
作者: Optometrist    時(shí)間: 2025-3-22 05:22
2191-8198 by numerical schemes – results that are also of importance for autonomous systems approximated by a numerical scheme with variable time steps, thus by a discrete time nonautonomous dynamical system..978-3-319-61933-0978-3-319-61934-7Series ISSN 2191-8198 Series E-ISSN 2191-8201
作者: OWL    時(shí)間: 2025-3-22 10:05
Xiaoying Han,Peter KloedenCombines a highly readable style, clear proofs, and many examples.Reviews essential earlier work on the discretisation of attractors and saddle points in autonomous systems.Introduces cutting-edge wor
作者: nephritis    時(shí)間: 2025-3-22 16:22

作者: 充滿裝飾    時(shí)間: 2025-3-22 19:17

作者: 從屬    時(shí)間: 2025-3-22 21:11
Produktdesign: Materialeigenschaften,First the Euler scheme and its local and global discretisation errors are presented. Then several one step schemes such as Taylor schemes, Runge–Kutta schemes are introduced. Consistency and numerical instability are discussed.
作者: Anterior    時(shí)間: 2025-3-23 03:49

作者: 言外之意    時(shí)間: 2025-3-23 06:31
Produktdesign: Materialeigenschaften,Lyapunov functions are defined and used to investigate the stability of the zero solution to Euler schemes for linear and nonlinear ODEs.
作者: Panther    時(shí)間: 2025-3-23 11:48

作者: Affable    時(shí)間: 2025-3-23 17:48
Produktdesign: Materialeigenschaften,Saddle points for Euler schemes for ODEs are discussed. Numerical stable and unstable manifolds are illustrated through a set of examples, and compared to the stable and unstable manifolds of the ODEs. The shadowing phenomenon is briefly illustrated. Finally, Beyn’s Theorem is presented.
作者: 引起    時(shí)間: 2025-3-23 19:21
Ram K. Mishra,Glen B. Baker,Alan A. BoultonEuler schemes for dissipative ODE systems with attractors are presented and shown to possess numerical attractors that converge to the ODE attractors upper semi continuously. A counterexample shows that the numerical attractor need not convergence lower semi continuously.
作者: EXCEL    時(shí)間: 2025-3-23 22:21

作者: 有害處    時(shí)間: 2025-3-24 04:03

作者: Isolate    時(shí)間: 2025-3-24 09:56
Stephanie J. Walker,H. Alex BrownNonautonomous dynamical systems and their omega limit sets are defined. The concepts of positive and negative asymptotic invariance are defined. The omega limit sets for dissipative nonautonomous dynamical systems are shown to be positive and negative asymptotic invariant under certain conditions.
作者: Immunotherapy    時(shí)間: 2025-3-24 12:48
https://doi.org/10.1385/1592594301Numerical nonautonomous omega limit sets for nonautonomous ODEs are constructed by using the implicit Euler scheme and shown to converge to the omega limit sets for the ODEs upper semi continuously.
作者: 庇護(hù)    時(shí)間: 2025-3-24 17:57

作者: Mingle    時(shí)間: 2025-3-24 21:54
Patricia M. Hinkle,John A. PuskasPullback and forward attractors for skew product flows are introduced, then the implicit Euler numerical scheme is applied to obtain a discrete time skew product flow. Existence of a numerical attractor for this discrete time skew product flow is established for sufficiently small step size.
作者: 胖人手藝好    時(shí)間: 2025-3-25 00:29

作者: Inscrutable    時(shí)間: 2025-3-25 03:48
Linear SystemsStability of linear systems by eigenvalue conditions is introduced. Stability conditions for one and two dimensional, as well as general linear systems, are established.
作者: thyroid-hormone    時(shí)間: 2025-3-25 08:38
Lyapunov FunctionsLyapunov functions are defined and used to investigate the stability of the zero solution to Euler schemes for linear and nonlinear ODEs.
作者: 冥想后    時(shí)間: 2025-3-25 13:35
Dissipative Systems with Steady StatesThe preservation or stability of the zero solution to Euler schemes for dissipative systems is established using Lyapunov functions.
作者: 大方一點(diǎn)    時(shí)間: 2025-3-25 16:09
Saddle Points Under DiscretisationSaddle points for Euler schemes for ODEs are discussed. Numerical stable and unstable manifolds are illustrated through a set of examples, and compared to the stable and unstable manifolds of the ODEs. The shadowing phenomenon is briefly illustrated. Finally, Beyn’s Theorem is presented.
作者: extrovert    時(shí)間: 2025-3-25 21:41
Dissipative Systems with AttractorsEuler schemes for dissipative ODE systems with attractors are presented and shown to possess numerical attractors that converge to the ODE attractors upper semi continuously. A counterexample shows that the numerical attractor need not convergence lower semi continuously.
作者: 替代品    時(shí)間: 2025-3-26 02:27

作者: 違反    時(shí)間: 2025-3-26 05:35
Discretisation of an Attractor: General CaseKloeden and Lorenz’s Theorem on the existence of a maximal numerical attractor of one step numerical schemes for general autonomous ODEs with a global attractor is stated and proved.
作者: SHOCK    時(shí)間: 2025-3-26 10:06

作者: 財(cái)主    時(shí)間: 2025-3-26 14:01

作者: SNEER    時(shí)間: 2025-3-26 18:50
Variable Step Size Discretisation of Autonomous AttractorsDiscretising autonomous ODEs with variable step size results in discrete nonautonomous semi-dynamical systems. Numerical omega limit sets for such dynamical systems are constructed and shown to converge to the attractor for the ODEs upper semi continuously.
作者: PLE    時(shí)間: 2025-3-27 00:24
Discretisation of a Uniform Pullback AttractorPullback and forward attractors for skew product flows are introduced, then the implicit Euler numerical scheme is applied to obtain a discrete time skew product flow. Existence of a numerical attractor for this discrete time skew product flow is established for sufficiently small step size.
作者: Fretful    時(shí)間: 2025-3-27 03:51

作者: 極力證明    時(shí)間: 2025-3-27 07:47
6樓
作者: 大包裹    時(shí)間: 2025-3-27 11:13
6樓
作者: Perineum    時(shí)間: 2025-3-27 14:32
6樓
作者: Sleep-Paralysis    時(shí)間: 2025-3-27 18:17
6樓
作者: 使閉塞    時(shí)間: 2025-3-27 22:18
7樓
作者: 弄污    時(shí)間: 2025-3-28 04:10
7樓
作者: 點(diǎn)燃    時(shí)間: 2025-3-28 06:53
7樓
作者: nutrients    時(shí)間: 2025-3-28 14:25
7樓
作者: 射手座    時(shí)間: 2025-3-28 17:32
8樓
作者: 存心    時(shí)間: 2025-3-28 22:14
8樓
作者: Expostulate    時(shí)間: 2025-3-29 02:45
8樓
作者: integral    時(shí)間: 2025-3-29 05:05
9樓
作者: 馬賽克    時(shí)間: 2025-3-29 09:20
9樓
作者: Predigest    時(shí)間: 2025-3-29 15:28
9樓
作者: 不法行為    時(shí)間: 2025-3-29 17:09
9樓
作者: Cardioplegia    時(shí)間: 2025-3-29 20:02
10樓
作者: COWER    時(shí)間: 2025-3-30 03:08
10樓
作者: Discrete    時(shí)間: 2025-3-30 06:37
10樓
作者: 地牢    時(shí)間: 2025-3-30 12:13
10樓




歡迎光臨 派博傳思國(guó)際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
汉沽区| 化州市| 广州市| 新化县| 江阴市| 晴隆县| 石楼县| 政和县| 巴青县| 宜章县| 蒙山县| 沙洋县| 湘潭县| 南召县| 浮梁县| 兰考县| 灌云县| 和林格尔县| 九龙城区| 盘锦市| 平度市| 辉南县| 会东县| 吉木乃县| 梨树县| 龙海市| 永安市| 祁连县| 吴川市| 固阳县| 嘉黎县| 河南省| 谢通门县| 贵阳市| 巴里| 泌阳县| 永川市| 海兴县| 万年县| 垦利县| 桂东县|