標(biāo)題: Titlebook: Asymptotic Efficiency of Statistical Estimators: Concepts and Higher Order Asymptotic Efficiency; Concepts and Higher Masafumi Akahira,Kei [打印本頁(yè)] 作者: LANK 時(shí)間: 2025-3-21 16:34
書(shū)目名稱Asymptotic Efficiency of Statistical Estimators: Concepts and Higher Order Asymptotic Efficiency影響因子(影響力)
書(shū)目名稱Asymptotic Efficiency of Statistical Estimators: Concepts and Higher Order Asymptotic Efficiency影響因子(影響力)學(xué)科排名
書(shū)目名稱Asymptotic Efficiency of Statistical Estimators: Concepts and Higher Order Asymptotic Efficiency網(wǎng)絡(luò)公開(kāi)度
書(shū)目名稱Asymptotic Efficiency of Statistical Estimators: Concepts and Higher Order Asymptotic Efficiency網(wǎng)絡(luò)公開(kāi)度學(xué)科排名
書(shū)目名稱Asymptotic Efficiency of Statistical Estimators: Concepts and Higher Order Asymptotic Efficiency被引頻次
書(shū)目名稱Asymptotic Efficiency of Statistical Estimators: Concepts and Higher Order Asymptotic Efficiency被引頻次學(xué)科排名
書(shū)目名稱Asymptotic Efficiency of Statistical Estimators: Concepts and Higher Order Asymptotic Efficiency年度引用
書(shū)目名稱Asymptotic Efficiency of Statistical Estimators: Concepts and Higher Order Asymptotic Efficiency年度引用學(xué)科排名
書(shū)目名稱Asymptotic Efficiency of Statistical Estimators: Concepts and Higher Order Asymptotic Efficiency讀者反饋
書(shū)目名稱Asymptotic Efficiency of Statistical Estimators: Concepts and Higher Order Asymptotic Efficiency讀者反饋學(xué)科排名
作者: 沖突 時(shí)間: 2025-3-21 22:23 作者: allergen 時(shí)間: 2025-3-22 03:18
Inner, Nested, and Anonymous Classes such a bound can be explicitely given. The asymptotic distribution of . and the bound for it in non-regular cases is discussed by Akahira [2]. Also some results in terms of the asymptotic distribution of estimators are given in Takeuchi [42]. Asymptotic sufficiency of consistent estimators is discu作者: 遭受 時(shí)間: 2025-3-22 07:22 作者: 動(dòng)物 時(shí)間: 2025-3-22 11:42
0930-0325 o- tic efficiency, together with the concept of the maximum order of consistency. Under the new definition as asymptotically efficient estimator may not always 978-0-387-90576-1978-1-4612-5927-5Series ISSN 0930-0325 Series E-ISSN 2197-7186 作者: cathartic 時(shí)間: 2025-3-22 15:23 作者: 陪審團(tuán)每個(gè)人 時(shí)間: 2025-3-22 19:09 作者: GRATE 時(shí)間: 2025-3-22 23:51
https://doi.org/10.1007/978-1-4302-0140-3gl ([32], [33]) obtained that MLE attains the second order asymptotic efficiency in the sense adopted here. In this chapter we shall discuss second order asymptotic efficiency and proceed further to third order asymptotic efficiency. We shall show that the results can be extended to non-regular situations.作者: 薄膜 時(shí)間: 2025-3-23 04:46 作者: indifferent 時(shí)間: 2025-3-23 06:13
Higher Order Asymptotic Efficiency,gl ([32], [33]) obtained that MLE attains the second order asymptotic efficiency in the sense adopted here. In this chapter we shall discuss second order asymptotic efficiency and proceed further to third order asymptotic efficiency. We shall show that the results can be extended to non-regular situations.作者: 處理 時(shí)間: 2025-3-23 10:35 作者: 混合,攙雜 時(shí)間: 2025-3-23 16:19
Book 1981Our investigation has two main purposes. Firstly, we discuss higher order asymptotic efficiency of estimators in regular situa- tions. In these situations it is known that the maximum likelihood estimator (MLE) is asymptotically efficient in some (not always specified) sense. However, there exists h作者: 暗指 時(shí)間: 2025-3-23 19:20
Foundations of Java for ABAP Programmerscond order asymptotically efficient but not always third order asymptotically efficient in the regular case. Further, it shall be seen that the asymptotic efficiency (including higher order cases) may be systematically discussed by discretized likelihood methods.作者: GENUS 時(shí)間: 2025-3-24 01:42 作者: Hangar 時(shí)間: 2025-3-24 04:58
https://doi.org/10.1007/978-1-4302-0140-3ation. Recently Chibisov [15], [16] has shown that a maximum likelihood estimator (MLE) is second order asymptotically efficient in this sense. Pfanzagl ([32], [33]) obtained that MLE attains the second order asymptotic efficiency in the sense adopted here. In this chapter we shall discuss second or作者: galley 時(shí)間: 2025-3-24 07:57
Inner, Nested, and Anonymous Classeserminology) and also by J.K.Ghosh and K.Subramanyam [21], for cases where sufficient statistics exist. In this section we shall establish more general results for the multiparameter exponential family, introducing a differential operator, and show that (modified) MLE is always optimal up to the orde作者: 動(dòng)作謎 時(shí)間: 2025-3-24 14:32
Foundations of Java for ABAP Programmersonsider a solution.of the discretized likelihood equation.where a.(θ, r) is chosen so that.is asymptotically median unbiased (AMU). Then the solution.is called a discretized likelihood estimator (DLE). In this chapter it is shown in comparison with DLE that a maximum likelihood estimator (MLE) is se作者: EPT 時(shí)間: 2025-3-24 14:53
Lecture Notes in Statisticshttp://image.papertrans.cn/b/image/163799.jpg作者: 散布 時(shí)間: 2025-3-24 21:02
Asymptotic Efficiency of Statistical Estimators: Concepts and Higher Order Asymptotic Efficiency978-1-4612-5927-5Series ISSN 0930-0325 Series E-ISSN 2197-7186 作者: 極端的正確性 時(shí)間: 2025-3-25 03:09
https://doi.org/10.1007/978-1-4612-5927-5Asymptotische Wirksamkeit; Estimator; Likelihood; Sch?tzung (Statistik); linear regression作者: PLAYS 時(shí)間: 2025-3-25 04:00 作者: Incommensurate 時(shí)間: 2025-3-25 10:18
Threads, Daemons, and Garbage CollectionSuppose that X., X., …, X., … are a sequence of random variables. Let (H) be a parameter space, which is assumed to be an open subset of Euclidean p-space R.. An estimator . , of θ is called . if for every ε > 0 and every ε? (H) ..作者: nettle 時(shí)間: 2025-3-25 14:39 作者: Tractable 時(shí)間: 2025-3-25 16:36 作者: NUL 時(shí)間: 2025-3-25 20:48 作者: 的染料 時(shí)間: 2025-3-26 01:36 作者: 歪曲道理 時(shí)間: 2025-3-26 05:50 作者: 終止 時(shí)間: 2025-3-26 10:51 作者: 說(shuō)明 時(shí)間: 2025-3-26 14:40
Higher Order Asymptotic Efficiency,ation. Recently Chibisov [15], [16] has shown that a maximum likelihood estimator (MLE) is second order asymptotically efficient in this sense. Pfanzagl ([32], [33]) obtained that MLE attains the second order asymptotic efficiency in the sense adopted here. In this chapter we shall discuss second or作者: photopsia 時(shí)間: 2025-3-26 18:35 作者: 睨視 時(shí)間: 2025-3-27 01:01 作者: Antecedent 時(shí)間: 2025-3-27 05:02
9樓作者: 推延 時(shí)間: 2025-3-27 06:25
9樓作者: 管理員 時(shí)間: 2025-3-27 11:30
9樓作者: AORTA 時(shí)間: 2025-3-27 17:08
10樓作者: 得意人 時(shí)間: 2025-3-27 17:52
10樓作者: 艦旗 時(shí)間: 2025-3-28 00:42
10樓作者: callous 時(shí)間: 2025-3-28 04:00
10樓