派博傳思國(guó)際中心

標(biāo)題: Titlebook: Asymptotic Efficiency of Statistical Estimators: Concepts and Higher Order Asymptotic Efficiency; Concepts and Higher Masafumi Akahira,Kei [打印本頁(yè)]

作者: LANK    時(shí)間: 2025-3-21 16:34
書(shū)目名稱Asymptotic Efficiency of Statistical Estimators: Concepts and Higher Order Asymptotic Efficiency影響因子(影響力)




書(shū)目名稱Asymptotic Efficiency of Statistical Estimators: Concepts and Higher Order Asymptotic Efficiency影響因子(影響力)學(xué)科排名




書(shū)目名稱Asymptotic Efficiency of Statistical Estimators: Concepts and Higher Order Asymptotic Efficiency網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Asymptotic Efficiency of Statistical Estimators: Concepts and Higher Order Asymptotic Efficiency網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Asymptotic Efficiency of Statistical Estimators: Concepts and Higher Order Asymptotic Efficiency被引頻次




書(shū)目名稱Asymptotic Efficiency of Statistical Estimators: Concepts and Higher Order Asymptotic Efficiency被引頻次學(xué)科排名




書(shū)目名稱Asymptotic Efficiency of Statistical Estimators: Concepts and Higher Order Asymptotic Efficiency年度引用




書(shū)目名稱Asymptotic Efficiency of Statistical Estimators: Concepts and Higher Order Asymptotic Efficiency年度引用學(xué)科排名




書(shū)目名稱Asymptotic Efficiency of Statistical Estimators: Concepts and Higher Order Asymptotic Efficiency讀者反饋




書(shū)目名稱Asymptotic Efficiency of Statistical Estimators: Concepts and Higher Order Asymptotic Efficiency讀者反饋學(xué)科排名





作者: 沖突    時(shí)間: 2025-3-21 22:23

作者: allergen    時(shí)間: 2025-3-22 03:18
Inner, Nested, and Anonymous Classes such a bound can be explicitely given. The asymptotic distribution of . and the bound for it in non-regular cases is discussed by Akahira [2]. Also some results in terms of the asymptotic distribution of estimators are given in Takeuchi [42]. Asymptotic sufficiency of consistent estimators is discu
作者: 遭受    時(shí)間: 2025-3-22 07:22

作者: 動(dòng)物    時(shí)間: 2025-3-22 11:42
0930-0325 o- tic efficiency, together with the concept of the maximum order of consistency. Under the new definition as asymptotically efficient estimator may not always 978-0-387-90576-1978-1-4612-5927-5Series ISSN 0930-0325 Series E-ISSN 2197-7186
作者: cathartic    時(shí)間: 2025-3-22 15:23

作者: 陪審團(tuán)每個(gè)人    時(shí)間: 2025-3-22 19:09

作者: GRATE    時(shí)間: 2025-3-22 23:51
https://doi.org/10.1007/978-1-4302-0140-3gl ([32], [33]) obtained that MLE attains the second order asymptotic efficiency in the sense adopted here. In this chapter we shall discuss second order asymptotic efficiency and proceed further to third order asymptotic efficiency. We shall show that the results can be extended to non-regular situations.
作者: 薄膜    時(shí)間: 2025-3-23 04:46

作者: indifferent    時(shí)間: 2025-3-23 06:13
Higher Order Asymptotic Efficiency,gl ([32], [33]) obtained that MLE attains the second order asymptotic efficiency in the sense adopted here. In this chapter we shall discuss second order asymptotic efficiency and proceed further to third order asymptotic efficiency. We shall show that the results can be extended to non-regular situations.
作者: 處理    時(shí)間: 2025-3-23 10:35

作者: 混合,攙雜    時(shí)間: 2025-3-23 16:19
Book 1981Our investigation has two main purposes. Firstly, we discuss higher order asymptotic efficiency of estimators in regular situa- tions. In these situations it is known that the maximum likelihood estimator (MLE) is asymptotically efficient in some (not always specified) sense. However, there exists h
作者: 暗指    時(shí)間: 2025-3-23 19:20
Foundations of Java for ABAP Programmerscond order asymptotically efficient but not always third order asymptotically efficient in the regular case. Further, it shall be seen that the asymptotic efficiency (including higher order cases) may be systematically discussed by discretized likelihood methods.
作者: GENUS    時(shí)間: 2025-3-24 01:42

作者: Hangar    時(shí)間: 2025-3-24 04:58
https://doi.org/10.1007/978-1-4302-0140-3ation. Recently Chibisov [15], [16] has shown that a maximum likelihood estimator (MLE) is second order asymptotically efficient in this sense. Pfanzagl ([32], [33]) obtained that MLE attains the second order asymptotic efficiency in the sense adopted here. In this chapter we shall discuss second or
作者: galley    時(shí)間: 2025-3-24 07:57
Inner, Nested, and Anonymous Classeserminology) and also by J.K.Ghosh and K.Subramanyam [21], for cases where sufficient statistics exist. In this section we shall establish more general results for the multiparameter exponential family, introducing a differential operator, and show that (modified) MLE is always optimal up to the orde
作者: 動(dòng)作謎    時(shí)間: 2025-3-24 14:32
Foundations of Java for ABAP Programmersonsider a solution.of the discretized likelihood equation.where a.(θ, r) is chosen so that.is asymptotically median unbiased (AMU). Then the solution.is called a discretized likelihood estimator (DLE). In this chapter it is shown in comparison with DLE that a maximum likelihood estimator (MLE) is se
作者: EPT    時(shí)間: 2025-3-24 14:53
Lecture Notes in Statisticshttp://image.papertrans.cn/b/image/163799.jpg
作者: 散布    時(shí)間: 2025-3-24 21:02
Asymptotic Efficiency of Statistical Estimators: Concepts and Higher Order Asymptotic Efficiency978-1-4612-5927-5Series ISSN 0930-0325 Series E-ISSN 2197-7186
作者: 極端的正確性    時(shí)間: 2025-3-25 03:09
https://doi.org/10.1007/978-1-4612-5927-5Asymptotische Wirksamkeit; Estimator; Likelihood; Sch?tzung (Statistik); linear regression
作者: PLAYS    時(shí)間: 2025-3-25 04:00

作者: Incommensurate    時(shí)間: 2025-3-25 10:18
Threads, Daemons, and Garbage CollectionSuppose that X., X., …, X., … are a sequence of random variables. Let (H) be a parameter space, which is assumed to be an open subset of Euclidean p-space R.. An estimator . , of θ is called . if for every ε > 0 and every ε? (H) ..
作者: nettle    時(shí)間: 2025-3-25 14:39

作者: Tractable    時(shí)間: 2025-3-25 16:36

作者: NUL    時(shí)間: 2025-3-25 20:48

作者: 的染料    時(shí)間: 2025-3-26 01:36

作者: 歪曲道理    時(shí)間: 2025-3-26 05:50

作者: 終止    時(shí)間: 2025-3-26 10:51

作者: 說(shuō)明    時(shí)間: 2025-3-26 14:40
Higher Order Asymptotic Efficiency,ation. Recently Chibisov [15], [16] has shown that a maximum likelihood estimator (MLE) is second order asymptotically efficient in this sense. Pfanzagl ([32], [33]) obtained that MLE attains the second order asymptotic efficiency in the sense adopted here. In this chapter we shall discuss second or
作者: photopsia    時(shí)間: 2025-3-26 18:35

作者: 睨視    時(shí)間: 2025-3-27 01:01

作者: Antecedent    時(shí)間: 2025-3-27 05:02
9樓
作者: 推延    時(shí)間: 2025-3-27 06:25
9樓
作者: 管理員    時(shí)間: 2025-3-27 11:30
9樓
作者: AORTA    時(shí)間: 2025-3-27 17:08
10樓
作者: 得意人    時(shí)間: 2025-3-27 17:52
10樓
作者: 艦旗    時(shí)間: 2025-3-28 00:42
10樓
作者: callous    時(shí)間: 2025-3-28 04:00
10樓




歡迎光臨 派博傳思國(guó)際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
新田县| 壤塘县| 高雄市| 垦利县| 泰安市| 筠连县| 西和县| 云林县| 旅游| 徐闻县| 梁平县| 合江县| 雷州市| 固阳县| 景泰县| 华蓥市| 永清县| 巴南区| 海宁市| 资中县| 万年县| 永登县| 长沙市| 城市| 岳阳县| 行唐县| 太康县| 永昌县| 英吉沙县| 淄博市| 禹城市| 澄城县| 双城市| 庆云县| 涟源市| 马山县| 休宁县| 阿拉善左旗| 句容市| 古田县| 黄骅市|