派博傳思國際中心

標題: Titlebook: Arithmetic and Algebraic Circuits; Antonio Lloris Ruiz,Encarnación Castillo Morales,M Book 2021 Springer Nature Switzerland AG 2021 Galois [打印本頁]

作者: chondrocyte    時間: 2025-3-21 16:37
書目名稱Arithmetic and Algebraic Circuits影響因子(影響力)




書目名稱Arithmetic and Algebraic Circuits影響因子(影響力)學科排名




書目名稱Arithmetic and Algebraic Circuits網(wǎng)絡(luò)公開度




書目名稱Arithmetic and Algebraic Circuits網(wǎng)絡(luò)公開度學科排名




書目名稱Arithmetic and Algebraic Circuits被引頻次




書目名稱Arithmetic and Algebraic Circuits被引頻次學科排名




書目名稱Arithmetic and Algebraic Circuits年度引用




書目名稱Arithmetic and Algebraic Circuits年度引用學科排名




書目名稱Arithmetic and Algebraic Circuits讀者反饋




書目名稱Arithmetic and Algebraic Circuits讀者反饋學科排名





作者: Adulate    時間: 2025-3-21 20:52

作者: Dislocation    時間: 2025-3-22 01:18
Residue Number Systems,dvantage is the absence of carry propagation between channels in addition, subtraction and multiplication. Thus, high-performance systems may be built for applications involving only these operations using Residue Number Systems.
作者: 字的誤用    時間: 2025-3-22 08:00
Floating Point,describes the basis of this number representation and?analyses the different rounding schemes. The standard IEEE 754is introduced as well as circuit designs to implement the main floating-point arithmetic operations. To close this chapter, the logarithmic system of real number representation is desc
作者: gnarled    時間: 2025-3-22 09:51
Addition and Subtraction,dition and the circuits implementing the addition operation in their different variations. Addition is the basic arithmetic operation, so the circuits presented in this chapter are the foundation for the implementation of the remaining arithmetic operations, as it will be discussed in the following
作者: 脫落    時間: 2025-3-22 16:01

作者: synchronous    時間: 2025-3-22 17:27

作者: epidermis    時間: 2025-3-22 22:30

作者: Robust    時間: 2025-3-23 04:11
Galois Fields GF(,),ifically to the circuits related to the finite fields GF(.) and GF(.), being . prime, following the same structure of Chap.?.. The theoretical foundations related to the Galois fields, algebra of polynomials and, particularly so now interested, related to GF(.) and to GF(.) are summarized in Appendi
作者: 高射炮    時間: 2025-3-23 09:01

作者: FLEET    時間: 2025-3-23 13:25
Expert Consolidation in Oracle Database 12ct going into implementation details. Chapter finishes studying the representation of integers using signed digits. The following chapter discusses in more detail these elementary operations, presenting different implementations.
作者: 全國性    時間: 2025-3-23 14:37

作者: 護航艦    時間: 2025-3-23 19:31
Expert Evidence in Domestic Jurisdictions, presented in this chapter are the foundation for the implementation of the remaining arithmetic operations, as it will be discussed in the following chapters. On the other hand, subtraction is just a variation of addition, only replacing the carry concept with that of borrow.
作者: GAVEL    時間: 2025-3-24 02:11
Olga Poleshchuk,Evgeniy Komarovions related to the Galois fields, algebra of polynomials and, particularly so now interested, related to GF(.) and to GF(.) are summarized in Appendices A and B. Therefore, it is advisable to review these Appendices when necessary.
作者: Immortal    時間: 2025-3-24 04:53

作者: lactic    時間: 2025-3-24 07:39
Floating Point,esigns to implement the main floating-point arithmetic operations. To close this chapter, the logarithmic system of real number representation is described with an outline of the circuits implementing it, which may be considered a special case of floating-point representation.
作者: excursion    時間: 2025-3-24 13:50

作者: 總    時間: 2025-3-24 18:50
Galois Fields GF(,),ions related to the Galois fields, algebra of polynomials and, particularly so now interested, related to GF(.) and to GF(.) are summarized in Appendices A and B. Therefore, it is advisable to review these Appendices when necessary.
作者: 不能仁慈    時間: 2025-3-24 20:12
Introducing Imperative Programming,quential multipliers are introduced. This multipliers enables the reduction of area resources at expenses of increasing the number of clock cycles. The use of radixes higher than two are also considered, presenting the Booth multiplier, and the chapter ends with some special multipliers that are required in some specific applications.
作者: Rustproof    時間: 2025-3-25 01:14
Book 2021 it describes simple circuits for the implementation of some basic arithmetic operations; it introduces theoretical basis for residue number systems; and describes some fundamental circuits for implementing the main modular operations that will be used in the text. Moreover, the book discusses float
作者: beta-carotene    時間: 2025-3-25 04:03

作者: 指令    時間: 2025-3-25 10:46
Antonio Lloris Ruiz,Encarnación Castillo Morales,MFirst self-contained reference guide to arithmetic and algebraic circuits.Offers the necessary background for the design of specific circuits.Describes cutting-edge algorithms and optimized circuits
作者: essential-fats    時間: 2025-3-25 15:01

作者: 中止    時間: 2025-3-25 17:26

作者: grounded    時間: 2025-3-25 23:13

作者: 大范圍流行    時間: 2025-3-26 02:30

作者: 谷類    時間: 2025-3-26 05:17
https://doi.org/10.1007/978-3-319-24340-5describes the basis of this number representation and?analyses the different rounding schemes. The standard IEEE 754is introduced as well as circuit designs to implement the main floating-point arithmetic operations. To close this chapter, the logarithmic system of real number representation is desc
作者: 蛙鳴聲    時間: 2025-3-26 09:02

作者: 寬敞    時間: 2025-3-26 16:27

作者: 斷言    時間: 2025-3-26 19:01

作者: Thyroid-Gland    時間: 2025-3-26 21:30

作者: 壟斷    時間: 2025-3-27 01:40
Olga Poleshchuk,Evgeniy Komarovifically to the circuits related to the finite fields GF(.) and GF(.), being . prime, following the same structure of Chap.?.. The theoretical foundations related to the Galois fields, algebra of polynomials and, particularly so now interested, related to GF(.) and to GF(.) are summarized in Appendi
作者: VALID    時間: 2025-3-27 05:53
Building Smart Web Applications,The basic algebraic circuits, linear feedback shift registers and cellular automata, are studied in this Chapter.
作者: 背帶    時間: 2025-3-27 10:48
Visualization and Graphical User Interfaces,After the presentation of the basic algebraic circuits, this chapter is specifically dedicated to the circuits based on the finite fields GF(2.). Finite fields or Galois fields have a variety of applications in several areas such as cryptography, coding and digital signal processing.
作者: 調(diào)整校對    時間: 2025-3-27 15:47

作者: Chemotherapy    時間: 2025-3-27 21:04
Basic Algebraic Circuits,The basic algebraic circuits, linear feedback shift registers and cellular automata, are studied in this Chapter.
作者: 幼稚    時間: 2025-3-28 01:17

作者: 填滿    時間: 2025-3-28 05:51

作者: COW    時間: 2025-3-28 07:07

作者: hazard    時間: 2025-3-28 11:44
https://doi.org/10.37307/b.978-3-503-20914-9apter. Specifically, the design of adders, subtracters, multipliers, dividers, comparators and shifters are studied, with the objective of providing the design guidelines for these specific application circuits. The arithmetic circuits presented will be used in the next chapters for the implementation of algebraic circuits.
作者: 擔憂    時間: 2025-3-28 15:56

作者: artless    時間: 2025-3-28 22:27

作者: 包租車船    時間: 2025-3-28 23:56
https://doi.org/10.1007/978-3-030-67266-9Galois Fields GF (2m); Galois Field GF (pn); Finite Fields; Residue Number Systems; Implementation of Al
作者: Slit-Lamp    時間: 2025-3-29 03:31

作者: incontinence    時間: 2025-3-29 08:16

作者: DRILL    時間: 2025-3-29 12:44
Residue Number Systems,dvantage is the absence of carry propagation between channels in addition, subtraction and multiplication. Thus, high-performance systems may be built for applications involving only these operations using Residue Number Systems.
作者: 和藹    時間: 2025-3-29 16:40

作者: Capitulate    時間: 2025-3-29 21:17
1868-4394 some exemplary applications and discussing the advantages in comparison to other methods. This dense, self-contained text provides students, researchers and engineers, with extensive knowledge on and a deep 978-3-030-67268-3978-3-030-67266-9Series ISSN 1868-4394 Series E-ISSN 1868-4408




歡迎光臨 派博傳思國際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
通江县| 北安市| 迭部县| 云南省| 玛曲县| 尉氏县| 岗巴县| 时尚| 兖州市| 乐亭县| 黑河市| 津南区| 香河县| 玛沁县| 岳西县| 买车| 纳雍县| 中山市| 颍上县| 且末县| 贞丰县| 望奎县| 横山县| 武陟县| 望奎县| 余江县| 隆德县| 潜山县| 方城县| 垫江县| 龙岩市| 涟水县| 增城市| 庆城县| 通辽市| 苏尼特左旗| 蕲春县| 嘉义市| 观塘区| 基隆市| 南郑县|