派博傳思國(guó)際中心

標(biāo)題: Titlebook: Arakelov Geometry over Adelic Curves; Huayi Chen,Atsushi Moriwaki Book 2020 Springer Nature Singapore Pte Ltd. 2020 Arakelov geometry.Adel [打印本頁(yè)]

作者: ISH    時(shí)間: 2025-3-21 18:44
書(shū)目名稱(chēng)Arakelov Geometry over Adelic Curves影響因子(影響力)




書(shū)目名稱(chēng)Arakelov Geometry over Adelic Curves影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Arakelov Geometry over Adelic Curves網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Arakelov Geometry over Adelic Curves網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Arakelov Geometry over Adelic Curves被引頻次




書(shū)目名稱(chēng)Arakelov Geometry over Adelic Curves被引頻次學(xué)科排名




書(shū)目名稱(chēng)Arakelov Geometry over Adelic Curves年度引用




書(shū)目名稱(chēng)Arakelov Geometry over Adelic Curves年度引用學(xué)科排名




書(shū)目名稱(chēng)Arakelov Geometry over Adelic Curves讀者反饋




書(shū)目名稱(chēng)Arakelov Geometry over Adelic Curves讀者反饋學(xué)科排名





作者: CHART    時(shí)間: 2025-3-21 21:39
Oesophageal Atresia Associationsllet-Soulé [23], (compare to the approach of Philippon [122], see also [136] for the comparison of these approaches). We refer the readers to [156] for an application of the Arakelov height theory in the adelic setting to the Bogomolov problem. The Arakelov height theory has been generalised by Mori
作者: 流利圓滑    時(shí)間: 2025-3-22 04:09

作者: left-ventricle    時(shí)間: 2025-3-22 07:34
Book 2020undles or that of Hermitian vector bundles over an arithmetic curve. They focus on ananalogue of the slope theory in the setting of adelic curves and in particular estimate the minimal slope of tensor product adelic vector bundles. Finally, by using the adelic vector bundles as a tool, a birational
作者: Jocose    時(shí)間: 2025-3-22 12:22

作者: 集聚成團(tuán)    時(shí)間: 2025-3-22 13:17
Slopes of tensor product,n recall in the second section some basic notions and results of the geometric invariant theory, in particular the Hilbert-Mumford criterion of the semistability. In the third section we give an estimate for the slope of a quotient adelic vector bundle of the tensor product adelic vector bundle, und
作者: Alienated    時(shí)間: 2025-3-22 17:08
https://doi.org/10.1007/978-3-642-11202-7Throughout the chapter, let . be a field equipped with an absolute value |?|. We assume that . is complete with respect to this absolute value. If |?| is Archimedean, we assume that it is the usual absolute value on . or ..
作者: intoxicate    時(shí)間: 2025-3-22 23:47
The Spectrum of Esophageal AtresiaThe purpose of this chapter is to study the geometry of adelic curves, notably the divisors and vector bundles.
作者: 焦慮    時(shí)間: 2025-3-23 02:41

作者: 清真寺    時(shí)間: 2025-3-23 06:05
Local metrics,Throughout the chapter, let . be a field equipped with an absolute value |?|. We assume that . is complete with respect to this absolute value. If |?| is Archimedean, we assume that it is the usual absolute value on . or ..
作者: PRO    時(shí)間: 2025-3-23 13:01

作者: Ambulatory    時(shí)間: 2025-3-23 17:21

作者: GEST    時(shí)間: 2025-3-23 20:43

作者: Herbivorous    時(shí)間: 2025-3-23 23:35
978-981-15-1727-3Springer Nature Singapore Pte Ltd. 2020
作者: 隨意    時(shí)間: 2025-3-24 06:08

作者: Disk199    時(shí)間: 2025-3-24 06:31

作者: 真實(shí)的人    時(shí)間: 2025-3-24 14:38

作者: Obsequious    時(shí)間: 2025-3-24 16:29

作者: 紋章    時(shí)間: 2025-3-24 19:13
The Spectrum of Esophageal Atresiarecisely, give a family . of adelic vector bundles over a proper adelic curve ., we give a lower bound of . in terms of the sum of the minimal slopes of . minus a term which is the product of three half of the measure of the infinite places and the sum of ., see Corollary 5.6.2 for details. This res
作者: maroon    時(shí)間: 2025-3-25 02:44
Mark Sedgwick,Francesco Pirainois dense in each .., where .?∈?.. We let .. be the set of all .?∈?. such that |?|. is the trivial absolute value. Note that, if .. is not empty, then the above hypothesis implies that, either the .-algebra . is discrete, or the field . is countable.
作者: 絕食    時(shí)間: 2025-3-25 04:41

作者: 整理    時(shí)間: 2025-3-25 10:40

作者: Adenocarcinoma    時(shí)間: 2025-3-25 12:41
Arakelov Geometry over Adelic Curves978-981-15-1728-0Series ISSN 0075-8434 Series E-ISSN 1617-9692
作者: narcissism    時(shí)間: 2025-3-25 16:28

作者: 茁壯成長(zhǎng)    時(shí)間: 2025-3-25 20:54

作者: arbiter    時(shí)間: 2025-3-26 01:46
Metrized vector bundles: local theory,fundament for the global study of adelic vector bundles. Note that we need to consider both Archimedean and non-Archimedean cases. Hence we carefully choose the approach of presentation to unify the statements whenever possible, and to clarify the differences.
作者: CLOWN    時(shí)間: 2025-3-26 04:51
Adelic curves,47] in the number field setting. This theory allows to consider all places of a global field in a unified way. It also leads to a uniform approach in the geometry of numbers in global fields, either via the adelic version of Minkowski’s theorems and Siegel’s lemma developed by McFeat [105], Bombieri
作者: delegate    時(shí)間: 2025-3-26 08:57
Slopes of tensor product,recisely, give a family . of adelic vector bundles over a proper adelic curve ., we give a lower bound of . in terms of the sum of the minimal slopes of . minus a term which is the product of three half of the measure of the infinite places and the sum of ., see Corollary 5.6.2 for details. This res
作者: 割公牛膨脹    時(shí)間: 2025-3-26 16:15
,Nakai-Moishezon’s criterion,is dense in each .., where .?∈?.. We let .. be the set of all .?∈?. such that |?|. is the trivial absolute value. Note that, if .. is not empty, then the above hypothesis implies that, either the .-algebra . is discrete, or the field . is countable.
作者: 劇毒    時(shí)間: 2025-3-26 20:00

作者: acolyte    時(shí)間: 2025-3-26 23:27

作者: 旅行路線(xiàn)    時(shí)間: 2025-3-27 04:00
9樓
作者: MILK    時(shí)間: 2025-3-27 09:20
9樓
作者: 聯(lián)想    時(shí)間: 2025-3-27 11:53
9樓
作者: 溫和女人    時(shí)間: 2025-3-27 16:50
10樓
作者: 植物群    時(shí)間: 2025-3-27 20:01
10樓
作者: innovation    時(shí)間: 2025-3-27 22:44
10樓
作者: 金盤(pán)是高原    時(shí)間: 2025-3-28 05:39
10樓




歡迎光臨 派博傳思國(guó)際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
莱阳市| 安宁市| 喀什市| 苍梧县| 墨竹工卡县| 博罗县| 宜章县| 平塘县| 兴文县| 闵行区| 沭阳县| 金坛市| 庆安县| 宁陵县| 金阳县| 峨边| 兴和县| 玉溪市| 兰州市| 杂多县| 湄潭县| 嵩明县| 绍兴市| 平远县| 麟游县| 聂荣县| 高陵县| 花垣县| 西丰县| 资源县| 霞浦县| 盐边县| 正安县| 涿州市| 南木林县| 兰溪市| 南宁市| 丘北县| 民乐县| 东源县| 石台县|