標題: Titlebook: Arakelov Geometry and Diophantine Applications; Emmanuel Peyre,Ga?l Rémond Book 2021 The Editor(s) (if applicable) and The Author(s), unde [打印本頁] 作者: Exaltation 時間: 2025-3-21 19:27
書目名稱Arakelov Geometry and Diophantine Applications影響因子(影響力)
書目名稱Arakelov Geometry and Diophantine Applications影響因子(影響力)學科排名
書目名稱Arakelov Geometry and Diophantine Applications網(wǎng)絡公開度
書目名稱Arakelov Geometry and Diophantine Applications網(wǎng)絡公開度學科排名
書目名稱Arakelov Geometry and Diophantine Applications被引頻次
書目名稱Arakelov Geometry and Diophantine Applications被引頻次學科排名
書目名稱Arakelov Geometry and Diophantine Applications年度引用
書目名稱Arakelov Geometry and Diophantine Applications年度引用學科排名
書目名稱Arakelov Geometry and Diophantine Applications讀者反饋
書目名稱Arakelov Geometry and Diophantine Applications讀者反饋學科排名
作者: N斯巴達人 時間: 2025-3-22 00:00
Chapter II: Minima and Slopes of Rigid Adelic Spaces Rémond (2017). We define the Harder-Narasimhan filtration, the slopes and several type of minima associated to such spaces. This formalism generalizes the Minkowski geometry of numbers for ellipsoids, the twisted height theory by Roy and Thunder as well as the slope theory of Hermitian vector bundl作者: Oligarchy 時間: 2025-3-22 03:39 作者: 柔美流暢 時間: 2025-3-22 04:45
Chapter V: Beyond Heights: Slopes and Distribution of Rational Points which are images of non-trivial finite morphisms. The problem is to find a way to characterise the points in these thin subsets. The slopes introduced by Jean-Beno?t Bost are a useful tool for this problem. These notes will present several cases in which this approach is fruitful. We shall also des作者: Reservation 時間: 2025-3-22 10:58
Chapter VIII : Autour du théorème de Fekete-Szeg?n ? classique ? du théorème de Fekete-Szeg?. La théorie du potentiel se généralise en fait aux surfaces de Riemann compactes. On explique comment ceci permet d’étendre les énoncés précédents au cas des surfaces arithmétiques. Enfin, on montre un théorème d’équirépartition d? à Bilu et Rumely.作者: 個人長篇演說 時間: 2025-3-22 15:10
Chapter IX: Some Problems of Arithmetic Origin in Rational Dynamicsc equidistribution theory can be used in the dynamics of rational maps on ... We first briefly introduce the basics of the iteration theory of rational maps on the projective line over ., as well as some elements of iteration theory over an arbitrary complete valued field and the construction of dyn作者: Ledger 時間: 2025-3-22 19:11 作者: 桶去微染 時間: 2025-3-23 00:20 作者: 課程 時間: 2025-3-23 04:21
Chapter XII: The Height of CM Points on Orthogonal Shimura Varieties and Colmez’s Conjecture in the summer of 2017. They are based on the paper “Faltings’ Heights of Abelian Varieties with Complex Multiplication” by myself, Eyal Goren, Ben Howard and Keerthi Madapusi Pera and on notes by myself and Eyal Goren. No new results are presented. The goal is to describe the strategy to reduce the作者: 個人長篇演說 時間: 2025-3-23 05:36 作者: HIKE 時間: 2025-3-23 10:14
Lecture Notes in Mathematicshttp://image.papertrans.cn/b/image/160603.jpg作者: CLEFT 時間: 2025-3-23 16:20 作者: 不出名 時間: 2025-3-23 20:40 作者: fructose 時間: 2025-3-24 00:27 作者: 前奏曲 時間: 2025-3-24 03:21 作者: Muffle 時間: 2025-3-24 07:41 作者: 6Applepolish 時間: 2025-3-24 13:33 作者: HACK 時間: 2025-3-24 17:20 作者: CAGE 時間: 2025-3-24 20:52
Suja Pillai,Neven Maksemous,Alfred K. Lamm of Arakelov geometry. For some simple Shimura varieties and automorphic vector bundles, the cohomological part of the formula can be understood via the theory of automorphic representations. Functoriality principles from this theory may then be applied to derive relations between arithmetic inters作者: 環(huán)形 時間: 2025-3-25 02:11 作者: Atrium 時間: 2025-3-25 04:26
https://doi.org/10.1007/978-3-030-57559-5Arakelov Geometry; Diophantine Geometry; Heights; Rational Points; Shimura Varieties作者: FEAS 時間: 2025-3-25 08:00 作者: 舊石器 時間: 2025-3-25 14:54
Arakelov Geometry and Diophantine Applications978-3-030-57559-5Series ISSN 0075-8434 Series E-ISSN 1617-9692 作者: 值得贊賞 時間: 2025-3-25 16:05 作者: Osmosis 時間: 2025-3-25 22:08 作者: 心痛 時間: 2025-3-26 01:49 作者: 不持續(xù)就爆 時間: 2025-3-26 06:00 作者: 粗糙濫制 時間: 2025-3-26 09:26
Risk Analysis in Esophageal Surgery,Arakelov geometry may be seen as a bridge between algebraic geometry and Diophantine geometry. The aim of this volume is to present in a quite self-contained form some striking examples of current Diophantine problems to which Arakelov geometry has been or may be applied.作者: antenna 時間: 2025-3-26 16:01
Benedetto Mungo MD,Daniela Molena MDLe but de ce chapitre est d’expliquer quelques théorèmes de type Hilbert-Samuel, qui étudient le comportement asymptotique d’un système linéaire gradué éventuellement métrisé, dans différents contextes : géométrie algébrique, géométrie analytique et géométrie arithmétique.作者: entrance 時間: 2025-3-26 20:34 作者: 易彎曲 時間: 2025-3-27 00:17 作者: Promotion 時間: 2025-3-27 01:47 作者: 解開 時間: 2025-3-27 06:08
Chapter III : Introduction aux théorèmes de Hilbert-Samuel arithmétiquesLe but de ce chapitre est d’expliquer quelques théorèmes de type Hilbert-Samuel, qui étudient le comportement asymptotique d’un système linéaire gradué éventuellement métrisé, dans différents contextes : géométrie algébrique, géométrie analytique et géométrie arithmétique.作者: committed 時間: 2025-3-27 12:18 作者: curettage 時間: 2025-3-27 17:10
Chapter VII: Arakelov Geometry, Heights, Equidistribution, and the Bogomolov ConjectureThis text is an introduction to the theory of heights in Arakelov geometry, with emphasis on equidistribution theorems, their limit measures (in archimedean and non-archimedean contexts), and its application to Ullmo–Zhang’s proof of the Bogomolov conjecture.作者: 不斷的變動 時間: 2025-3-27 21:33
0075-8434 this popular and active area of research.Features well-writ.Bridging the gap between novice and expert, the aim of this book is to present in a self-contained way a number of striking examples of current diophantine problems to which Arakelov geometry has been or may be applied. Arakelov geometry c作者: 不法行為 時間: 2025-3-28 01:53 作者: 展覽 時間: 2025-3-28 04:45 作者: MEET 時間: 2025-3-28 06:39 作者: 權宜之計 時間: 2025-3-28 10:56 作者: 神秘 時間: 2025-3-28 15:35 作者: Merited 時間: 2025-3-28 18:54 作者: countenance 時間: 2025-3-29 02:53 作者: 親密 時間: 2025-3-29 05:50 作者: 出血 時間: 2025-3-29 09:33
Surgery: Minimally Invasive Esophagectomy,istribution of preperiodic orbits, leading to some non-trivial rigidity statements. We then explain some consequences of arithmetic equidistribution to the study of the geometry of parameter spaces of such dynamical systems, notably pertaining to the distribution of special parameters and the classification of special subvarieties.作者: 發(fā)牢騷 時間: 2025-3-29 12:03 作者: 易于 時間: 2025-3-29 15:40 作者: 虛構的東西 時間: 2025-3-29 23:15 作者: 轉向 時間: 2025-3-29 23:58
Chapter XI: The Arithmetic Riemann–Roch Theorem and the Jacquet–Langlands Correspondenceection numbers for different Shimura varieties. In this lectures we explain this philosophy in the case of modular curves and compact Shimura curves. This indicates that there is some relationship between the arithmetic Riemann–Roch theorem and trace type formulae.