派博傳思國際中心

標題: Titlebook: Arakelov Geometry and Diophantine Applications; Emmanuel Peyre,Ga?l Rémond Book 2021 The Editor(s) (if applicable) and The Author(s), unde [打印本頁]

作者: Exaltation    時間: 2025-3-21 19:27
書目名稱Arakelov Geometry and Diophantine Applications影響因子(影響力)




書目名稱Arakelov Geometry and Diophantine Applications影響因子(影響力)學科排名




書目名稱Arakelov Geometry and Diophantine Applications網(wǎng)絡公開度




書目名稱Arakelov Geometry and Diophantine Applications網(wǎng)絡公開度學科排名




書目名稱Arakelov Geometry and Diophantine Applications被引頻次




書目名稱Arakelov Geometry and Diophantine Applications被引頻次學科排名




書目名稱Arakelov Geometry and Diophantine Applications年度引用




書目名稱Arakelov Geometry and Diophantine Applications年度引用學科排名




書目名稱Arakelov Geometry and Diophantine Applications讀者反饋




書目名稱Arakelov Geometry and Diophantine Applications讀者反饋學科排名





作者: N斯巴達人    時間: 2025-3-22 00:00
Chapter II: Minima and Slopes of Rigid Adelic Spaces Rémond (2017). We define the Harder-Narasimhan filtration, the slopes and several type of minima associated to such spaces. This formalism generalizes the Minkowski geometry of numbers for ellipsoids, the twisted height theory by Roy and Thunder as well as the slope theory of Hermitian vector bundl
作者: Oligarchy    時間: 2025-3-22 03:39

作者: 柔美流暢    時間: 2025-3-22 04:45
Chapter V: Beyond Heights: Slopes and Distribution of Rational Points which are images of non-trivial finite morphisms. The problem is to find a way to characterise the points in these thin subsets. The slopes introduced by Jean-Beno?t Bost are a useful tool for this problem. These notes will present several cases in which this approach is fruitful. We shall also des
作者: Reservation    時間: 2025-3-22 10:58
Chapter VIII : Autour du théorème de Fekete-Szeg?n ? classique ? du théorème de Fekete-Szeg?. La théorie du potentiel se généralise en fait aux surfaces de Riemann compactes. On explique comment ceci permet d’étendre les énoncés précédents au cas des surfaces arithmétiques. Enfin, on montre un théorème d’équirépartition d? à Bilu et Rumely.
作者: 個人長篇演說    時間: 2025-3-22 15:10
Chapter IX: Some Problems of Arithmetic Origin in Rational Dynamicsc equidistribution theory can be used in the dynamics of rational maps on ... We first briefly introduce the basics of the iteration theory of rational maps on the projective line over ., as well as some elements of iteration theory over an arbitrary complete valued field and the construction of dyn
作者: Ledger    時間: 2025-3-22 19:11

作者: 桶去微染    時間: 2025-3-23 00:20

作者: 課程    時間: 2025-3-23 04:21
Chapter XII: The Height of CM Points on Orthogonal Shimura Varieties and Colmez’s Conjecture in the summer of 2017. They are based on the paper “Faltings’ Heights of Abelian Varieties with Complex Multiplication” by myself, Eyal Goren, Ben Howard and Keerthi Madapusi Pera and on notes by myself and Eyal Goren. No new results are presented. The goal is to describe the strategy to reduce the
作者: 個人長篇演說    時間: 2025-3-23 05:36

作者: HIKE    時間: 2025-3-23 10:14
Lecture Notes in Mathematicshttp://image.papertrans.cn/b/image/160603.jpg
作者: CLEFT    時間: 2025-3-23 16:20

作者: 不出名    時間: 2025-3-23 20:40

作者: fructose    時間: 2025-3-24 00:27

作者: 前奏曲    時間: 2025-3-24 03:21

作者: Muffle    時間: 2025-3-24 07:41

作者: 6Applepolish    時間: 2025-3-24 13:33

作者: HACK    時間: 2025-3-24 17:20

作者: CAGE    時間: 2025-3-24 20:52
Suja Pillai,Neven Maksemous,Alfred K. Lamm of Arakelov geometry. For some simple Shimura varieties and automorphic vector bundles, the cohomological part of the formula can be understood via the theory of automorphic representations. Functoriality principles from this theory may then be applied to derive relations between arithmetic inters
作者: 環(huán)形    時間: 2025-3-25 02:11

作者: Atrium    時間: 2025-3-25 04:26
https://doi.org/10.1007/978-3-030-57559-5Arakelov Geometry; Diophantine Geometry; Heights; Rational Points; Shimura Varieties
作者: FEAS    時間: 2025-3-25 08:00

作者: 舊石器    時間: 2025-3-25 14:54
Arakelov Geometry and Diophantine Applications978-3-030-57559-5Series ISSN 0075-8434 Series E-ISSN 1617-9692
作者: 值得贊賞    時間: 2025-3-25 16:05

作者: Osmosis    時間: 2025-3-25 22:08

作者: 心痛    時間: 2025-3-26 01:49

作者: 不持續(xù)就爆    時間: 2025-3-26 06:00

作者: 粗糙濫制    時間: 2025-3-26 09:26
Risk Analysis in Esophageal Surgery,Arakelov geometry may be seen as a bridge between algebraic geometry and Diophantine geometry. The aim of this volume is to present in a quite self-contained form some striking examples of current Diophantine problems to which Arakelov geometry has been or may be applied.
作者: antenna    時間: 2025-3-26 16:01
Benedetto Mungo MD,Daniela Molena MDLe but de ce chapitre est d’expliquer quelques théorèmes de type Hilbert-Samuel, qui étudient le comportement asymptotique d’un système linéaire gradué éventuellement métrisé, dans différents contextes : géométrie algébrique, géométrie analytique et géométrie arithmétique.
作者: entrance    時間: 2025-3-26 20:34

作者: 易彎曲    時間: 2025-3-27 00:17

作者: Promotion    時間: 2025-3-27 01:47

作者: 解開    時間: 2025-3-27 06:08
Chapter III : Introduction aux théorèmes de Hilbert-Samuel arithmétiquesLe but de ce chapitre est d’expliquer quelques théorèmes de type Hilbert-Samuel, qui étudient le comportement asymptotique d’un système linéaire gradué éventuellement métrisé, dans différents contextes : géométrie algébrique, géométrie analytique et géométrie arithmétique.
作者: committed    時間: 2025-3-27 12:18

作者: curettage    時間: 2025-3-27 17:10
Chapter VII: Arakelov Geometry, Heights, Equidistribution, and the Bogomolov ConjectureThis text is an introduction to the theory of heights in Arakelov geometry, with emphasis on equidistribution theorems, their limit measures (in archimedean and non-archimedean contexts), and its application to Ullmo–Zhang’s proof of the Bogomolov conjecture.
作者: 不斷的變動    時間: 2025-3-27 21:33
0075-8434 this popular and active area of research.Features well-writ.Bridging the gap between novice and expert, the aim of this book is to present in a self-contained way a number of striking examples of current diophantine problems to which Arakelov geometry has been or may be applied. Arakelov geometry c
作者: 不法行為    時間: 2025-3-28 01:53

作者: 展覽    時間: 2025-3-28 04:45

作者: MEET    時間: 2025-3-28 06:39

作者: 權宜之計    時間: 2025-3-28 10:56

作者: 神秘    時間: 2025-3-28 15:35

作者: Merited    時間: 2025-3-28 18:54

作者: countenance    時間: 2025-3-29 02:53

作者: 親密    時間: 2025-3-29 05:50

作者: 出血    時間: 2025-3-29 09:33
Surgery: Minimally Invasive Esophagectomy,istribution of preperiodic orbits, leading to some non-trivial rigidity statements. We then explain some consequences of arithmetic equidistribution to the study of the geometry of parameter spaces of such dynamical systems, notably pertaining to the distribution of special parameters and the classification of special subvarieties.
作者: 發(fā)牢騷    時間: 2025-3-29 12:03

作者: 易于    時間: 2025-3-29 15:40

作者: 虛構的東西    時間: 2025-3-29 23:15

作者: 轉向    時間: 2025-3-29 23:58
Chapter XI: The Arithmetic Riemann–Roch Theorem and the Jacquet–Langlands Correspondenceection numbers for different Shimura varieties. In this lectures we explain this philosophy in the case of modular curves and compact Shimura curves. This indicates that there is some relationship between the arithmetic Riemann–Roch theorem and trace type formulae.




歡迎光臨 派博傳思國際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
麟游县| 盐池县| 澄城县| 长沙市| 海原县| 蒲城县| 平湖市| 曲阳县| 安平县| 高台县| 封开县| 常山县| 海口市| 宁河县| 确山县| 浪卡子县| 南汇区| 兴国县| 神池县| 邵阳市| 东乡| 蚌埠市| 平湖市| 登封市| 渭南市| 会理县| 耿马| 余庆县| 龙州县| 微山县| 和龙市| 铜陵市| 阿瓦提县| 阿克| 罗山县| 柳河县| 阿坝| 丰顺县| 张北县| 盐边县| 汶上县|