標(biāo)題: Titlebook: Approximation by Max-Product Type Operators; Barnabás Bede,Lucian Coroianu,Sorin G. Gal Book 2016 Springer International Publishing Switze [打印本頁] 作者: FERN 時(shí)間: 2025-3-21 18:36
書目名稱Approximation by Max-Product Type Operators影響因子(影響力)
書目名稱Approximation by Max-Product Type Operators影響因子(影響力)學(xué)科排名
書目名稱Approximation by Max-Product Type Operators網(wǎng)絡(luò)公開度
書目名稱Approximation by Max-Product Type Operators網(wǎng)絡(luò)公開度學(xué)科排名
書目名稱Approximation by Max-Product Type Operators被引頻次
書目名稱Approximation by Max-Product Type Operators被引頻次學(xué)科排名
書目名稱Approximation by Max-Product Type Operators年度引用
書目名稱Approximation by Max-Product Type Operators年度引用學(xué)科排名
書目名稱Approximation by Max-Product Type Operators讀者反饋
書目名稱Approximation by Max-Product Type Operators讀者反饋學(xué)科排名
作者: HIKE 時(shí)間: 2025-3-21 21:38 作者: 旋轉(zhuǎn)一周 時(shí)間: 2025-3-22 00:32 作者: RENAL 時(shí)間: 2025-3-22 07:06 作者: 榮幸 時(shí)間: 2025-3-22 10:24 作者: LINE 時(shí)間: 2025-3-22 16:18
P. Frick,G.-A. Harnack,A. PraderIn this chapter we study the problem of partial global smoothness preservation in the cases of max-product Bernstein approximation operator, max-product Hermite–Féjer interpolation operator based on the Chebyshev nodes of first kind and max-product Lagrange interpolation operator based on the Chebyshev nodes of second kind.作者: 打谷工具 時(shí)間: 2025-3-22 20:42 作者: PON 時(shí)間: 2025-3-23 00:53
Introduction and Preliminaries,In this chapter we introduce the reader into the topic of the book and present some preliminaries useful for the next chapters.作者: seroma 時(shí)間: 2025-3-23 04:49
Approximation by Max-Product Bernstein Operators,Section?. of this chapter contains general results of approximation obtained by applying Theorem?., Jackson-type estimates for some particular classes of functions and results of shape preserving.作者: GLUE 時(shí)間: 2025-3-23 08:22
Approximation by Max-Product Baskakov Operators,This chapter studies the approximation and the shape preserving properties of the max-product Baskakov operators, denoted by ...(.) in the non-truncated case, by ...(.) in the truncated case and attached to bounded functions . with only positive values.作者: plasma-cells 時(shí)間: 2025-3-23 12:35 作者: 善于騙人 時(shí)間: 2025-3-23 15:15
,Approximation by Max-Product Meyer–K?nig and Zeller Operators,In this chapter the approximation and shape preserving properties of the max-product Meyer–K?nig and Zeller operators, ...(.)(.), are presented.作者: STEER 時(shí)間: 2025-3-23 18:22
Global Smoothness Preservation Properties,In this chapter we study the problem of partial global smoothness preservation in the cases of max-product Bernstein approximation operator, max-product Hermite–Féjer interpolation operator based on the Chebyshev nodes of first kind and max-product Lagrange interpolation operator based on the Chebyshev nodes of second kind.作者: 彎彎曲曲 時(shí)間: 2025-3-24 00:37
Max-Product Weierstrass Type Functions,Starting from the classical Weierstrass functions, in this chapter we introduce the so-called Weierstrass functions of max-product type, for which we prove that the set of the points of non-differentiability is uncountable, nowhere dense and of Lebesgue measure 0. Also, the fractal properties of these functions are studied.作者: 戰(zhàn)役 時(shí)間: 2025-3-24 06:05 作者: obviate 時(shí)間: 2025-3-24 10:11
http://image.papertrans.cn/b/image/160439.jpg作者: 金盤是高原 時(shí)間: 2025-3-24 12:16 作者: 值得贊賞 時(shí)間: 2025-3-24 14:50 作者: RAG 時(shí)間: 2025-3-24 20:03 作者: Offstage 時(shí)間: 2025-3-25 03:10 作者: 鉤針織物 時(shí)間: 2025-3-25 04:33 作者: Brain-Waves 時(shí)間: 2025-3-25 09:31
978-3-319-81697-5Springer International Publishing Switzerland 2016作者: 時(shí)間等 時(shí)間: 2025-3-25 15:04 作者: 乳汁 時(shí)間: 2025-3-25 16:33
,Approximation by Max-Product Favard–Szász–Mirakjan Operators,wing the ideas in Theorem?. (see also Subsection?., Property C) it is easily seen that all the approximation and shape preserving properties proved for ...(.)(.) and . below in this chapter remain valid for the max-product operators . and ..作者: Memorial 時(shí)間: 2025-3-25 22:01 作者: ligature 時(shí)間: 2025-3-26 03:48 作者: Hyperopia 時(shí)間: 2025-3-26 07:58 作者: 跟隨 時(shí)間: 2025-3-26 11:40 作者: 夸張 時(shí)間: 2025-3-26 15:06
Alcohol and the Gastrointestinal Tract,oes not offer only a natural justification for the max-product Bernstein operators, but also allows to extend the method to other discrete max-product Bernstein type operators, like the max-product Meyer-K?nig and Zeller operators, max-product Favard–Szász–Mirakjan operators, and max-product Baskakov operators.作者: Hyperplasia 時(shí)間: 2025-3-26 19:29 作者: ACE-inhibitor 時(shí)間: 2025-3-26 21:48 作者: 高貴領(lǐng)導(dǎo) 時(shí)間: 2025-3-27 01:07
Ergebnisse der experimentellen Balneologie,wing the ideas in Theorem?. (see also Subsection?., Property C) it is easily seen that all the approximation and shape preserving properties proved for ...(.)(.) and . below in this chapter remain valid for the max-product operators . and ..作者: CUB 時(shí)間: 2025-3-27 06:54
Book 2016type operators and convolution type operators: firstly, as possibilistic expectations of somefuzzy variables, and secondly, as bases for the Feller type scheme in terms of the possibilistic integral. These approaches also offer new proofs for the uniform convergence based on a Chebyshev type inequal作者: 變形詞 時(shí)間: 2025-3-27 13:02
omefuzzy variables, and secondly, as bases for the Feller type scheme in terms of the possibilistic integral. These approaches also offer new proofs for the uniform convergence based on a Chebyshev type inequal978-3-319-81697-5978-3-319-34189-7作者: 打火石 時(shí)間: 2025-3-27 14:39 作者: DRAFT 時(shí)間: 2025-3-27 18:31
Approximation by Max-Product Interpolation Operators, on Chebyshev knots of first kind, max-product Lagrange operator on Chebyshev knots of second kind, and max-product Lagrange operator on equidistant and on general Jacobi knots. An important characteristic of the approximation error estimates obtained is that they are all of Jackson-type, thus essen作者: olfction 時(shí)間: 2025-3-27 22:27 作者: Proclaim 時(shí)間: 2025-3-28 05:34
Possibilistic Approaches of the Max-Product Type Operators,a random variable based on the Bernoulli distribution and uses the Chebyshev’s inequality in probability theory (see [.], or the more available [.]). The first main aim of this chapter is to give a proof for the convergence of the max-product Bernstein operators by using the possibility theory, whic作者: 說明 時(shí)間: 2025-3-28 08:45
8樓作者: FID 時(shí)間: 2025-3-28 10:41
8樓作者: 過份艷麗 時(shí)間: 2025-3-28 16:28
9樓作者: integral 時(shí)間: 2025-3-28 22:13
9樓作者: Blemish 時(shí)間: 2025-3-29 02:18
9樓作者: 致詞 時(shí)間: 2025-3-29 04:09
9樓作者: 耕種 時(shí)間: 2025-3-29 09:45
10樓作者: 終止 時(shí)間: 2025-3-29 12:18
10樓作者: 強(qiáng)所 時(shí)間: 2025-3-29 19:23
10樓作者: 人類的發(fā)源 時(shí)間: 2025-3-29 20:09
10樓