標(biāo)題: Titlebook: Approximation Theory in the Central Limit Theorem; Exact Results in Ban V. Paulauskas,A. Ra?kauskas Book 1989 Kluwer Academic Publishers 19 [打印本頁(yè)] 作者: 短暫 時(shí)間: 2025-3-21 20:10
書(shū)目名稱Approximation Theory in the Central Limit Theorem影響因子(影響力)
書(shū)目名稱Approximation Theory in the Central Limit Theorem影響因子(影響力)學(xué)科排名
書(shū)目名稱Approximation Theory in the Central Limit Theorem網(wǎng)絡(luò)公開(kāi)度
書(shū)目名稱Approximation Theory in the Central Limit Theorem網(wǎng)絡(luò)公開(kāi)度學(xué)科排名
書(shū)目名稱Approximation Theory in the Central Limit Theorem被引頻次
書(shū)目名稱Approximation Theory in the Central Limit Theorem被引頻次學(xué)科排名
書(shū)目名稱Approximation Theory in the Central Limit Theorem年度引用
書(shū)目名稱Approximation Theory in the Central Limit Theorem年度引用學(xué)科排名
書(shū)目名稱Approximation Theory in the Central Limit Theorem讀者反饋
書(shū)目名稱Approximation Theory in the Central Limit Theorem讀者反饋學(xué)科排名
作者: optic-nerve 時(shí)間: 2025-3-21 22:24
978-94-011-7800-6Kluwer Academic Publishers 1989作者: 四指套 時(shí)間: 2025-3-22 03:25 作者: 埋葬 時(shí)間: 2025-3-22 07:34
K. Frisch,R. Goldschmidt,H. Wintersteiner are extensively used in Chapter 5 in constructing the estimates of convergence rate in the CLT. It is for the convenience of the readers that the necessary items on differential calculus in normed spaces are presented first.*作者: antidote 時(shí)間: 2025-3-22 11:49 作者: 共同生活 時(shí)間: 2025-3-22 13:45 作者: Custodian 時(shí)間: 2025-3-22 18:35 作者: drusen 時(shí)間: 2025-3-23 00:18
Gaussian Measure of ,-Strip of Some Sets,Let .,., and . be probability measures on a separable Banach space ..作者: 祖?zhèn)髫?cái)產(chǎn) 時(shí)間: 2025-3-23 03:23 作者: Climate 時(shí)間: 2025-3-23 07:56 作者: Substance 時(shí)間: 2025-3-23 13:13 作者: 分散 時(shí)間: 2025-3-23 16:35
The Central Limit Theorem in Banach Spaces, a Gaussian distribution. First we consider type-2 operators whose relation to the CLT is established in Section 3.2. By means of this relation the CLT is proved in the spaces .(.) and ., in particular.作者: Carcinogen 時(shí)間: 2025-3-23 19:21 作者: 水汽 時(shí)間: 2025-3-24 02:05 作者: 禮節(jié) 時(shí)間: 2025-3-24 05:43 作者: 調(diào)色板 時(shí)間: 2025-3-24 08:35 作者: Metastasis 時(shí)間: 2025-3-24 12:52 作者: 奇怪 時(shí)間: 2025-3-24 17:09
https://doi.org/10.1007/978-3-642-91056-2 a Gaussian distribution. First we consider type-2 operators whose relation to the CLT is established in Section 3.2. By means of this relation the CLT is proved in the spaces .(.) and ., in particular.作者: Pepsin 時(shí)間: 2025-3-24 21:22
General Questions of the Distribution Theory in Banach Spaces,e presented without proofs, providing the reader with references to the books [3], [31], [32], [38], [66], [84], [102], [106], [213], [215]. The theory of distributions in Banach (and more general linear topological) spaces is considered in detail in the monograph [215].作者: BALE 時(shí)間: 2025-3-25 01:06 作者: 暖昧關(guān)系 時(shí)間: 2025-3-25 06:14 作者: 哀求 時(shí)間: 2025-3-25 07:41
7樓作者: recession 時(shí)間: 2025-3-25 15:05
7樓作者: conference 時(shí)間: 2025-3-25 16:20
7樓作者: 易受騙 時(shí)間: 2025-3-25 23:35
7樓作者: Hot-Flash 時(shí)間: 2025-3-26 01:05
8樓作者: LINES 時(shí)間: 2025-3-26 08:13
8樓作者: Irrigate 時(shí)間: 2025-3-26 12:19
8樓作者: mucous-membrane 時(shí)間: 2025-3-26 12:53
9樓作者: gait-cycle 時(shí)間: 2025-3-26 18:53
9樓作者: NIB 時(shí)間: 2025-3-26 22:15
9樓作者: 蛤肉 時(shí)間: 2025-3-27 02:18
9樓作者: 河流 時(shí)間: 2025-3-27 05:21
10樓作者: Emmenagogue 時(shí)間: 2025-3-27 10:21
10樓作者: Anterior 時(shí)間: 2025-3-27 16:52
10樓作者: 休閑 時(shí)間: 2025-3-27 18:41
10樓