標(biāo)題: Titlebook: Andreotti-Grauert Theory by Integral Formulas; Gennadi M. Henkin,Jürgen Leiterer Book 1988 Springer Science+Business Media New York 1988 a [打印本頁] 作者: 啞劇表演 時間: 2025-3-21 17:42
書目名稱Andreotti-Grauert Theory by Integral Formulas影響因子(影響力)
書目名稱Andreotti-Grauert Theory by Integral Formulas影響因子(影響力)學(xué)科排名
書目名稱Andreotti-Grauert Theory by Integral Formulas網(wǎng)絡(luò)公開度
書目名稱Andreotti-Grauert Theory by Integral Formulas網(wǎng)絡(luò)公開度學(xué)科排名
書目名稱Andreotti-Grauert Theory by Integral Formulas被引頻次
書目名稱Andreotti-Grauert Theory by Integral Formulas被引頻次學(xué)科排名
書目名稱Andreotti-Grauert Theory by Integral Formulas年度引用
書目名稱Andreotti-Grauert Theory by Integral Formulas年度引用學(xué)科排名
書目名稱Andreotti-Grauert Theory by Integral Formulas讀者反饋
書目名稱Andreotti-Grauert Theory by Integral Formulas讀者反饋學(xué)科排名
作者: athlete’s-foot 時間: 2025-3-21 21:39 作者: Palpate 時間: 2025-3-22 03:15
The Cauchy-Riemann Equation on q-Concave Manifolds,constructed, which yields local extension of holomorphic functions (local Hartogs extension phenomenon), as well as local solutions of . for all l≤r≤q?1. In Sect. 14, first we prove 1/2-H?lder estimates for these local solutions, repeating word for word the arguments from Sect. 9. Then, using the sa作者: Hot-Flash 時間: 2025-3-22 06:49 作者: 作繭自縛 時間: 2025-3-22 09:10 作者: Aprope 時間: 2025-3-22 14:56
Drug Receptors and Their Effectorsconstructed, which yields local extension of holomorphic functions (local Hartogs extension phenomenon), as well as local solutions of . for all l≤r≤q?1. In Sect. 14, first we prove 1/2-H?lder estimates for these local solutions, repeating word for word the arguments from Sect. 9. Then, using the sa作者: recede 時間: 2025-3-22 19:12 作者: 俗艷 時間: 2025-3-22 22:27
O. Pongs,R. Bald,V. A. Erdmann,E. ReinwaldIn this chapter we introduce the concepts of q-convex and q-concave manifolds and prove some elementary properties of them.作者: Ointment 時間: 2025-3-23 04:32 作者: dry-eye 時間: 2025-3-23 08:36
q-Convex and q-Concave Manifolds,In this chapter we introduce the concepts of q-convex and q-concave manifolds and prove some elementary properties of them.作者: 畫布 時間: 2025-3-23 10:39 作者: 作繭自縛 時間: 2025-3-23 15:25 作者: Figate 時間: 2025-3-23 21:51
0743-1643 Overview: 978-0-8176-3413-1978-1-4899-6724-4Series ISSN 0743-1643 Series E-ISSN 2296-505X 作者: pacific 時間: 2025-3-23 22:55
https://doi.org/10.1007/978-1-4899-6724-4analysis; Integral; integral equation; mathematics作者: 無動于衷 時間: 2025-3-24 06:13 作者: 含水層 時間: 2025-3-24 07:04
Integral Formulas and First Applications,the arguments which lead from the Poincaré .-lemma and the regularity of the ??-operator to the Dolbeault isomorphism and the theorem on smoothing of the .-cohomology. In Sect. 3 we prove a generalization of the Cauchy-Fantappie formula, which will be called the . Cauchy-Fantappie formula. This form作者: inscribe 時間: 2025-3-24 13:36
The Cauchy-Riemann Equation on q-Convex Manifolds, then dim H. (X, E) < ∞ for all r≥n?q, where, in the . q-convex case, even H. (X, E) = 0 for all r≥n?q. Also in Sect. 12, we prove the following supplement to Theorem 11.2: If D is a non-degenerate . q-convex domain in an n-dimensional complex manifold X, and E is a holomorphic vector bundle over X,作者: Anticoagulant 時間: 2025-3-24 14:59
The Cauchy-Riemann Equation on q-Concave Manifolds,r≤q?1 admit uniquely determined continuations along such extensions (for r=0, this is the global Hartogs extension phenomenon for holomorphic functions). Moreover, corresponding results with uniform estimates are obtained. At the end of Sect. 15 we prove the classical Andreotti-Grauert finiteness th作者: Terrace 時間: 2025-3-24 22:23
O. Pongs,R. Bald,V. A. Erdmann,E. Reinwaldthe arguments which lead from the Poincaré .-lemma and the regularity of the ??-operator to the Dolbeault isomorphism and the theorem on smoothing of the .-cohomology. In Sect. 3 we prove a generalization of the Cauchy-Fantappie formula, which will be called the . Cauchy-Fantappie formula. This form作者: bourgeois 時間: 2025-3-25 00:48 作者: 傾聽 時間: 2025-3-25 05:23 作者: commonsense 時間: 2025-3-25 09:38
6樓作者: 混沌 時間: 2025-3-25 14:14
6樓作者: Palliation 時間: 2025-3-25 16:33
7樓作者: Spartan 時間: 2025-3-25 23:46
7樓作者: 可觸知 時間: 2025-3-26 02:29
7樓作者: nocturia 時間: 2025-3-26 04:58
7樓作者: HAIL 時間: 2025-3-26 09:49
8樓作者: discord 時間: 2025-3-26 13:34
8樓作者: Jubilation 時間: 2025-3-26 18:00
8樓作者: 牛的細(xì)微差別 時間: 2025-3-26 23:35
8樓作者: 軌道 時間: 2025-3-27 02:37
9樓作者: 水汽 時間: 2025-3-27 05:34
9樓作者: Melatonin 時間: 2025-3-27 12:53
9樓作者: 愛好 時間: 2025-3-27 14:24
10樓作者: FANG 時間: 2025-3-27 20:00
10樓作者: Minutes 時間: 2025-3-28 01:02
10樓作者: addict 時間: 2025-3-28 05:56
10樓