派博傳思國際中心

標(biāo)題: Titlebook: Andreotti-Grauert Theory by Integral Formulas; Gennadi M. Henkin,Jürgen Leiterer Book 1988 Springer Science+Business Media New York 1988 a [打印本頁]

作者: 啞劇表演    時間: 2025-3-21 17:42
書目名稱Andreotti-Grauert Theory by Integral Formulas影響因子(影響力)




書目名稱Andreotti-Grauert Theory by Integral Formulas影響因子(影響力)學(xué)科排名




書目名稱Andreotti-Grauert Theory by Integral Formulas網(wǎng)絡(luò)公開度




書目名稱Andreotti-Grauert Theory by Integral Formulas網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Andreotti-Grauert Theory by Integral Formulas被引頻次




書目名稱Andreotti-Grauert Theory by Integral Formulas被引頻次學(xué)科排名




書目名稱Andreotti-Grauert Theory by Integral Formulas年度引用




書目名稱Andreotti-Grauert Theory by Integral Formulas年度引用學(xué)科排名




書目名稱Andreotti-Grauert Theory by Integral Formulas讀者反饋




書目名稱Andreotti-Grauert Theory by Integral Formulas讀者反饋學(xué)科排名





作者: athlete’s-foot    時間: 2025-3-21 21:39

作者: Palpate    時間: 2025-3-22 03:15
The Cauchy-Riemann Equation on q-Concave Manifolds,constructed, which yields local extension of holomorphic functions (local Hartogs extension phenomenon), as well as local solutions of . for all l≤r≤q?1. In Sect. 14, first we prove 1/2-H?lder estimates for these local solutions, repeating word for word the arguments from Sect. 9. Then, using the sa
作者: Hot-Flash    時間: 2025-3-22 06:49

作者: 作繭自縛    時間: 2025-3-22 09:10

作者: Aprope    時間: 2025-3-22 14:56
Drug Receptors and Their Effectorsconstructed, which yields local extension of holomorphic functions (local Hartogs extension phenomenon), as well as local solutions of . for all l≤r≤q?1. In Sect. 14, first we prove 1/2-H?lder estimates for these local solutions, repeating word for word the arguments from Sect. 9. Then, using the sa
作者: recede    時間: 2025-3-22 19:12

作者: 俗艷    時間: 2025-3-22 22:27
O. Pongs,R. Bald,V. A. Erdmann,E. ReinwaldIn this chapter we introduce the concepts of q-convex and q-concave manifolds and prove some elementary properties of them.
作者: Ointment    時間: 2025-3-23 04:32

作者: dry-eye    時間: 2025-3-23 08:36
q-Convex and q-Concave Manifolds,In this chapter we introduce the concepts of q-convex and q-concave manifolds and prove some elementary properties of them.
作者: 畫布    時間: 2025-3-23 10:39

作者: 作繭自縛    時間: 2025-3-23 15:25

作者: Figate    時間: 2025-3-23 21:51
0743-1643 Overview: 978-0-8176-3413-1978-1-4899-6724-4Series ISSN 0743-1643 Series E-ISSN 2296-505X
作者: pacific    時間: 2025-3-23 22:55
https://doi.org/10.1007/978-1-4899-6724-4analysis; Integral; integral equation; mathematics
作者: 無動于衷    時間: 2025-3-24 06:13

作者: 含水層    時間: 2025-3-24 07:04
Integral Formulas and First Applications,the arguments which lead from the Poincaré .-lemma and the regularity of the ??-operator to the Dolbeault isomorphism and the theorem on smoothing of the .-cohomology. In Sect. 3 we prove a generalization of the Cauchy-Fantappie formula, which will be called the . Cauchy-Fantappie formula. This form
作者: inscribe    時間: 2025-3-24 13:36
The Cauchy-Riemann Equation on q-Convex Manifolds, then dim H. (X, E) < ∞ for all r≥n?q, where, in the . q-convex case, even H. (X, E) = 0 for all r≥n?q. Also in Sect. 12, we prove the following supplement to Theorem 11.2: If D is a non-degenerate . q-convex domain in an n-dimensional complex manifold X, and E is a holomorphic vector bundle over X,
作者: Anticoagulant    時間: 2025-3-24 14:59
The Cauchy-Riemann Equation on q-Concave Manifolds,r≤q?1 admit uniquely determined continuations along such extensions (for r=0, this is the global Hartogs extension phenomenon for holomorphic functions). Moreover, corresponding results with uniform estimates are obtained. At the end of Sect. 15 we prove the classical Andreotti-Grauert finiteness th
作者: Terrace    時間: 2025-3-24 22:23
O. Pongs,R. Bald,V. A. Erdmann,E. Reinwaldthe arguments which lead from the Poincaré .-lemma and the regularity of the ??-operator to the Dolbeault isomorphism and the theorem on smoothing of the .-cohomology. In Sect. 3 we prove a generalization of the Cauchy-Fantappie formula, which will be called the . Cauchy-Fantappie formula. This form
作者: bourgeois    時間: 2025-3-25 00:48

作者: 傾聽    時間: 2025-3-25 05:23

作者: commonsense    時間: 2025-3-25 09:38
6樓
作者: 混沌    時間: 2025-3-25 14:14
6樓
作者: Palliation    時間: 2025-3-25 16:33
7樓
作者: Spartan    時間: 2025-3-25 23:46
7樓
作者: 可觸知    時間: 2025-3-26 02:29
7樓
作者: nocturia    時間: 2025-3-26 04:58
7樓
作者: HAIL    時間: 2025-3-26 09:49
8樓
作者: discord    時間: 2025-3-26 13:34
8樓
作者: Jubilation    時間: 2025-3-26 18:00
8樓
作者: 牛的細(xì)微差別    時間: 2025-3-26 23:35
8樓
作者: 軌道    時間: 2025-3-27 02:37
9樓
作者: 水汽    時間: 2025-3-27 05:34
9樓
作者: Melatonin    時間: 2025-3-27 12:53
9樓
作者: 愛好    時間: 2025-3-27 14:24
10樓
作者: FANG    時間: 2025-3-27 20:00
10樓
作者: Minutes    時間: 2025-3-28 01:02
10樓
作者: addict    時間: 2025-3-28 05:56
10樓




歡迎光臨 派博傳思國際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
林甸县| 青河县| 扶沟县| 兴和县| 汕头市| 新兴县| 嘉黎县| 句容市| 阳山县| 县级市| 高密市| 定襄县| 江北区| 策勒县| 安岳县| 疏附县| 贞丰县| 凤庆县| 潍坊市| 麦盖提县| 建阳市| 弥渡县| 楚雄市| 赫章县| 大足县| 绥阳县| 罗平县| 贵溪市| 安平县| 岱山县| 嘉义市| 县级市| 揭东县| 噶尔县| 化隆| 邵武市| 孝感市| 台中县| 乌兰浩特市| 台北县| 青海省|