派博傳思國(guó)際中心

標(biāo)題: Titlebook: Analytic Function Theory of Several Variables; Elements of Oka’s Co Junjiro Noguchi Textbook 2016 Springer Science+Business Media Singapore [打印本頁(yè)]

作者: GOLF    時(shí)間: 2025-3-21 19:31
書目名稱Analytic Function Theory of Several Variables影響因子(影響力)




書目名稱Analytic Function Theory of Several Variables影響因子(影響力)學(xué)科排名




書目名稱Analytic Function Theory of Several Variables網(wǎng)絡(luò)公開度




書目名稱Analytic Function Theory of Several Variables網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Analytic Function Theory of Several Variables被引頻次




書目名稱Analytic Function Theory of Several Variables被引頻次學(xué)科排名




書目名稱Analytic Function Theory of Several Variables年度引用




書目名稱Analytic Function Theory of Several Variables年度引用學(xué)科排名




書目名稱Analytic Function Theory of Several Variables讀者反饋




書目名稱Analytic Function Theory of Several Variables讀者反饋學(xué)科排名





作者: 染色體    時(shí)間: 2025-3-21 23:05
Domains of Holomorphy,omain analytically extend over . (no Hartogs’ phenomenon happens at any boundary point). We first discuss the logarithmic convexity of Reinhardt domains, where every holomorphic function is expanded to a convergent power series. We prove that a domain is holomorphically convex if and only if it is a
作者: 講個(gè)故事逗他    時(shí)間: 2025-3-22 01:13
Analytic Sets and Complex Spaces,nce Theorem”, claiming the coherence of a geometric ideal sheaf (the ideal sheaf of an analytic set). By making use of it, the subset of singular points of an analytic set is proved to be an analytic subset of lower dimension. In the latter half, the notion of a complex space is introduced. Oka’s no
作者: GULP    時(shí)間: 2025-3-22 06:29

作者: 精致    時(shí)間: 2025-3-22 12:36
,Cohomology of Coherent Sheaves and Kodaira’s Embedding Theorem, topology in the space of sections of a coherent sheaf. As a consequence we will see that all cohomologies of a coherent sheaf over a compact complex space are finite dimensional (Cartan–Serre Theorem). Furthermore, we will extend Grauert’s Theorem?. for a general coherent sheaf. Then, as an applica
作者: GULF    時(shí)間: 2025-3-22 15:23
Correction to: Analytic Function Theory of Several Variables,
作者: EWER    時(shí)間: 2025-3-22 18:18
Erratum to: Analytic Function Theory of Several Variables,
作者: Blood-Clot    時(shí)間: 2025-3-23 00:05

作者: 生銹    時(shí)間: 2025-3-23 02:13

作者: acolyte    時(shí)間: 2025-3-23 09:36
Textbook 2016ter learning the elementary materials (sets, general topology, algebra, one complex variable). This includes the essential parts of Grauert–Remmert‘s two volumes, GL227(236) (.Theory of Stein spaces.) and GL265 (.Coherent analytic sheaves.) with a lowering of the level for novice graduate students (
作者: Evocative    時(shí)間: 2025-3-23 12:27

作者: engrossed    時(shí)間: 2025-3-23 17:41
Reflecting on the Arts in Urban Schoolsts of an analytic set is proved to be an analytic subset of lower dimension. In the latter half, the notion of a complex space is introduced. Oka’s normalization theorem, which reduces a singular point to a normal one with better property, and “Oka’s Third Coherence Theorem” claiming the coherence of the normalization sheaf are proved.
作者: CHYME    時(shí)間: 2025-3-23 20:39

作者: Cubicle    時(shí)間: 2025-3-24 02:01

作者: covert    時(shí)間: 2025-3-24 04:59
,Cohomology of Coherent Sheaves and Kodaira’s Embedding Theorem,tween the theory of compact K?hler manifolds and that of complex projective algebraic varieties; it is nice to see such a theorem being naturally proved on the extended line of the theory of coherent sheaves.
作者: 高度表    時(shí)間: 2025-3-24 10:07

作者: allergy    時(shí)間: 2025-3-24 13:57

作者: 土產(chǎn)    時(shí)間: 2025-3-24 15:33

作者: 發(fā)酵劑    時(shí)間: 2025-3-24 19:51

作者: 爆炸    時(shí)間: 2025-3-25 00:50

作者: 散開    時(shí)間: 2025-3-25 06:46

作者: scrape    時(shí)間: 2025-3-25 10:32

作者: 單純    時(shí)間: 2025-3-25 12:30

作者: ANN    時(shí)間: 2025-3-25 18:46

作者: DEI    時(shí)間: 2025-3-25 23:54
Reflecting on the Arts in Urban SchoolsIn this chapter we prove the Oka–Cartan Fundamental Theorem on holomorphically convex domain . of .; that, is, it is proved that . (.) for every coherent sheaf . over holomorphically convex domains .. In the course of the proof, Oka’s J?ku-Ik? plays an essential role.
作者: inchoate    時(shí)間: 2025-3-26 04:11

作者: 賠償    時(shí)間: 2025-3-26 08:11

作者: negotiable    時(shí)間: 2025-3-26 10:28
,Holomorphically Convex Domains and the Oka–Cartan Fundamental Theorem,In this chapter we prove the Oka–Cartan Fundamental Theorem on holomorphically convex domain . of .; that, is, it is proved that . (.) for every coherent sheaf . over holomorphically convex domains .. In the course of the proof, Oka’s J?ku-Ik? plays an essential role.
作者: Keratectomy    時(shí)間: 2025-3-26 15:11

作者: 侵蝕    時(shí)間: 2025-3-26 19:54
https://doi.org/10.1007/978-981-10-0291-5Oka--Cartan’s fundamental theorem; Oka’s first coherence theorem; Oka’s theorem; Pseudoconvex domains; h
作者: Evocative    時(shí)間: 2025-3-26 22:09

作者: Notify    時(shí)間: 2025-3-27 04:05
Federica Fornaciari,Laine Goldmanenomenon, which is a special property in several variables caused by the increase in the number of variables from a single variable. We will see that the concept of “holomorphic convexity” arises naturally. In the last section, the notion of a sheaf will be introduced.
作者: Myelin    時(shí)間: 2025-3-27 07:24

作者: 解凍    時(shí)間: 2025-3-27 13:03

作者: 惡名聲    時(shí)間: 2025-3-27 16:38

作者: 得罪    時(shí)間: 2025-3-27 17:48

作者: Dictation    時(shí)間: 2025-3-27 22:58
7樓
作者: CUB    時(shí)間: 2025-3-28 03:53
8樓
作者: 流浪者    時(shí)間: 2025-3-28 06:54
8樓
作者: Perineum    時(shí)間: 2025-3-28 12:51
8樓
作者: Abduct    時(shí)間: 2025-3-28 18:35
8樓
作者: cipher    時(shí)間: 2025-3-28 21:39
9樓
作者: Obsequious    時(shí)間: 2025-3-28 23:43
9樓
作者: assent    時(shí)間: 2025-3-29 06:11
9樓
作者: 祖?zhèn)?nbsp;   時(shí)間: 2025-3-29 09:45
10樓
作者: LAPSE    時(shí)間: 2025-3-29 14:29
10樓
作者: 背景    時(shí)間: 2025-3-29 17:40
10樓
作者: 縮減了    時(shí)間: 2025-3-29 20:51
10樓




歡迎光臨 派博傳思國(guó)際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
阳城县| 浏阳市| 资兴市| 新余市| 汨罗市| 镇江市| 甘洛县| 舞阳县| 兴宁市| 赤城县| 东平县| 庄浪县| 蓝山县| 特克斯县| 苍山县| 内江市| 绥德县| 丹凤县| 尼勒克县| 赫章县| 巴南区| 东安县| 康平县| 天津市| 通州区| 临沧市| 太康县| 双辽市| 长武县| 兖州市| 万载县| 宁夏| 紫阳县| 泾阳县| 军事| 南平市| 勐海县| 弥渡县| 崇文区| 凤台县| 名山县|