標(biāo)題: Titlebook: Analytic Function Theory of Several Variables; Elements of Oka’s Co Junjiro Noguchi Textbook 2016 Springer Science+Business Media Singapore [打印本頁(yè)] 作者: GOLF 時(shí)間: 2025-3-21 19:31
書目名稱Analytic Function Theory of Several Variables影響因子(影響力)
書目名稱Analytic Function Theory of Several Variables影響因子(影響力)學(xué)科排名
書目名稱Analytic Function Theory of Several Variables網(wǎng)絡(luò)公開度
書目名稱Analytic Function Theory of Several Variables網(wǎng)絡(luò)公開度學(xué)科排名
書目名稱Analytic Function Theory of Several Variables被引頻次
書目名稱Analytic Function Theory of Several Variables被引頻次學(xué)科排名
書目名稱Analytic Function Theory of Several Variables年度引用
書目名稱Analytic Function Theory of Several Variables年度引用學(xué)科排名
書目名稱Analytic Function Theory of Several Variables讀者反饋
書目名稱Analytic Function Theory of Several Variables讀者反饋學(xué)科排名
作者: 染色體 時(shí)間: 2025-3-21 23:05
Domains of Holomorphy,omain analytically extend over . (no Hartogs’ phenomenon happens at any boundary point). We first discuss the logarithmic convexity of Reinhardt domains, where every holomorphic function is expanded to a convergent power series. We prove that a domain is holomorphically convex if and only if it is a作者: 講個(gè)故事逗他 時(shí)間: 2025-3-22 01:13
Analytic Sets and Complex Spaces,nce Theorem”, claiming the coherence of a geometric ideal sheaf (the ideal sheaf of an analytic set). By making use of it, the subset of singular points of an analytic set is proved to be an analytic subset of lower dimension. In the latter half, the notion of a complex space is introduced. Oka’s no作者: GULP 時(shí)間: 2025-3-22 06:29 作者: 精致 時(shí)間: 2025-3-22 12:36
,Cohomology of Coherent Sheaves and Kodaira’s Embedding Theorem, topology in the space of sections of a coherent sheaf. As a consequence we will see that all cohomologies of a coherent sheaf over a compact complex space are finite dimensional (Cartan–Serre Theorem). Furthermore, we will extend Grauert’s Theorem?. for a general coherent sheaf. Then, as an applica作者: GULF 時(shí)間: 2025-3-22 15:23
Correction to: Analytic Function Theory of Several Variables,作者: EWER 時(shí)間: 2025-3-22 18:18
Erratum to: Analytic Function Theory of Several Variables,作者: Blood-Clot 時(shí)間: 2025-3-23 00:05 作者: 生銹 時(shí)間: 2025-3-23 02:13 作者: acolyte 時(shí)間: 2025-3-23 09:36
Textbook 2016ter learning the elementary materials (sets, general topology, algebra, one complex variable). This includes the essential parts of Grauert–Remmert‘s two volumes, GL227(236) (.Theory of Stein spaces.) and GL265 (.Coherent analytic sheaves.) with a lowering of the level for novice graduate students (作者: Evocative 時(shí)間: 2025-3-23 12:27 作者: engrossed 時(shí)間: 2025-3-23 17:41
Reflecting on the Arts in Urban Schoolsts of an analytic set is proved to be an analytic subset of lower dimension. In the latter half, the notion of a complex space is introduced. Oka’s normalization theorem, which reduces a singular point to a normal one with better property, and “Oka’s Third Coherence Theorem” claiming the coherence of the normalization sheaf are proved.作者: CHYME 時(shí)間: 2025-3-23 20:39 作者: Cubicle 時(shí)間: 2025-3-24 02:01 作者: covert 時(shí)間: 2025-3-24 04:59
,Cohomology of Coherent Sheaves and Kodaira’s Embedding Theorem,tween the theory of compact K?hler manifolds and that of complex projective algebraic varieties; it is nice to see such a theorem being naturally proved on the extended line of the theory of coherent sheaves.作者: 高度表 時(shí)間: 2025-3-24 10:07 作者: allergy 時(shí)間: 2025-3-24 13:57 作者: 土產(chǎn) 時(shí)間: 2025-3-24 15:33 作者: 發(fā)酵劑 時(shí)間: 2025-3-24 19:51 作者: 爆炸 時(shí)間: 2025-3-25 00:50 作者: 散開 時(shí)間: 2025-3-25 06:46 作者: scrape 時(shí)間: 2025-3-25 10:32 作者: 單純 時(shí)間: 2025-3-25 12:30 作者: ANN 時(shí)間: 2025-3-25 18:46 作者: DEI 時(shí)間: 2025-3-25 23:54
Reflecting on the Arts in Urban SchoolsIn this chapter we prove the Oka–Cartan Fundamental Theorem on holomorphically convex domain . of .; that, is, it is proved that . (.) for every coherent sheaf . over holomorphically convex domains .. In the course of the proof, Oka’s J?ku-Ik? plays an essential role.作者: inchoate 時(shí)間: 2025-3-26 04:11 作者: 賠償 時(shí)間: 2025-3-26 08:11 作者: negotiable 時(shí)間: 2025-3-26 10:28
,Holomorphically Convex Domains and the Oka–Cartan Fundamental Theorem,In this chapter we prove the Oka–Cartan Fundamental Theorem on holomorphically convex domain . of .; that, is, it is proved that . (.) for every coherent sheaf . over holomorphically convex domains .. In the course of the proof, Oka’s J?ku-Ik? plays an essential role.作者: Keratectomy 時(shí)間: 2025-3-26 15:11 作者: 侵蝕 時(shí)間: 2025-3-26 19:54
https://doi.org/10.1007/978-981-10-0291-5Oka--Cartan’s fundamental theorem; Oka’s first coherence theorem; Oka’s theorem; Pseudoconvex domains; h作者: Evocative 時(shí)間: 2025-3-26 22:09 作者: Notify 時(shí)間: 2025-3-27 04:05
Federica Fornaciari,Laine Goldmanenomenon, which is a special property in several variables caused by the increase in the number of variables from a single variable. We will see that the concept of “holomorphic convexity” arises naturally. In the last section, the notion of a sheaf will be introduced.作者: Myelin 時(shí)間: 2025-3-27 07:24 作者: 解凍 時(shí)間: 2025-3-27 13:03 作者: 惡名聲 時(shí)間: 2025-3-27 16:38 作者: 得罪 時(shí)間: 2025-3-27 17:48 作者: Dictation 時(shí)間: 2025-3-27 22:58
7樓作者: CUB 時(shí)間: 2025-3-28 03:53
8樓作者: 流浪者 時(shí)間: 2025-3-28 06:54
8樓作者: Perineum 時(shí)間: 2025-3-28 12:51
8樓作者: Abduct 時(shí)間: 2025-3-28 18:35
8樓作者: cipher 時(shí)間: 2025-3-28 21:39
9樓作者: Obsequious 時(shí)間: 2025-3-28 23:43
9樓作者: assent 時(shí)間: 2025-3-29 06:11
9樓作者: 祖?zhèn)?nbsp; 時(shí)間: 2025-3-29 09:45
10樓作者: LAPSE 時(shí)間: 2025-3-29 14:29
10樓作者: 背景 時(shí)間: 2025-3-29 17:40
10樓作者: 縮減了 時(shí)間: 2025-3-29 20:51
10樓