標(biāo)題: Titlebook: Analytic Aspects of Convexity; Gabriele Bianchi,Andrea Colesanti,Paolo Gronchi Book 2018 Springer International Publishing AG 2018 Convex [打印本頁] 作者: 租期 時(shí)間: 2025-3-21 18:29
書目名稱Analytic Aspects of Convexity影響因子(影響力)
書目名稱Analytic Aspects of Convexity影響因子(影響力)學(xué)科排名
書目名稱Analytic Aspects of Convexity網(wǎng)絡(luò)公開度
書目名稱Analytic Aspects of Convexity網(wǎng)絡(luò)公開度學(xué)科排名
書目名稱Analytic Aspects of Convexity被引頻次
書目名稱Analytic Aspects of Convexity被引頻次學(xué)科排名
書目名稱Analytic Aspects of Convexity年度引用
書目名稱Analytic Aspects of Convexity年度引用學(xué)科排名
書目名稱Analytic Aspects of Convexity讀者反饋
書目名稱Analytic Aspects of Convexity讀者反饋學(xué)科排名
作者: 使混合 時(shí)間: 2025-3-21 23:24 作者: GENRE 時(shí)間: 2025-3-22 00:34
Analytic Aspects of Convexity978-3-319-71834-7Series ISSN 2281-518X Series E-ISSN 2281-5198 作者: 充氣女 時(shí)間: 2025-3-22 06:55 作者: 猛然一拉 時(shí)間: 2025-3-22 09:42
https://doi.org/10.1007/978-1-349-19849-8pectively, for polygons. These concepts of affine length are shown to be similar to their counterparts defined for smooth convex bodies in that they satisfy analogous affine isoperimetric type inequalities.作者: NIL 時(shí)間: 2025-3-22 15:50
Text and Violence in Tsvetaeva’s ).?+?.vol(.). for compact sets ., . and .?∈?[0, 1]. Here we will show that if a given measure satisfies an inequality like this, with a certain positive power, for the family of all Euclidean balls then it must be a constant multiple of the volume.作者: 清醒 時(shí)間: 2025-3-22 18:27 作者: 看法等 時(shí)間: 2025-3-22 21:25 作者: 妨礙 時(shí)間: 2025-3-23 05:15 作者: 沙漠 時(shí)間: 2025-3-23 07:59
Input-output analysis of relay servo systemsof the querma?integrals of the corresponding .-convex bodies. These bounds are obtained as consequences of a most general result for functions defined on a general probability space. Moreover, similar estimates for the integrals of powers of the elementary symmetric functions of the radii of curvatu作者: Vo2-Max 時(shí)間: 2025-3-23 13:30 作者: Resign 時(shí)間: 2025-3-23 14:02
Text and Violence in Tsvetaeva’s ween areas of sections of these bodies. In this note we extend two such inequalities established in Koldobsky (Adv Math 283:473–488, 2015) and Giannopoulos and Koldobsky (Trans Am Math Soc, ., to appear) from the hyperplane case to the case of sections of arbitrary dimensions.作者: 阻撓 時(shí)間: 2025-3-23 18:03 作者: 宇宙你 時(shí)間: 2025-3-24 00:05 作者: Nomadic 時(shí)間: 2025-3-24 03:09
Extensions of Reverse Volume Difference Inequalities,ween areas of sections of these bodies. In this note we extend two such inequalities established in Koldobsky (Adv Math 283:473–488, 2015) and Giannopoulos and Koldobsky (Trans Am Math Soc, ., to appear) from the hyperplane case to the case of sections of arbitrary dimensions.作者: 投票 時(shí)間: 2025-3-24 06:37
Discrete Centro-Affine Curvature for Convex Polygons,pectively, for polygons. These concepts of affine length are shown to be similar to their counterparts defined for smooth convex bodies in that they satisfy analogous affine isoperimetric type inequalities.作者: Exposure 時(shí)間: 2025-3-24 11:09
Characterizing the Volume via a Brunn-Minkowski Type Inequality,).?+?.vol(.). for compact sets ., . and .?∈?[0, 1]. Here we will show that if a given measure satisfies an inequality like this, with a certain positive power, for the family of all Euclidean balls then it must be a constant multiple of the volume.作者: 迫擊炮 時(shí)間: 2025-3-24 15:40 作者: Radiculopathy 時(shí)間: 2025-3-24 20:07
https://doi.org/10.1007/978-0-8176-4753-7mial algebra. This is a short way to encode all local kinematic formulas. We then characterize the invariant valuations on complex space forms leaving the space of invariant angular curvature measures fixed.作者: 不滿分子 時(shí)間: 2025-3-25 02:23
Dual Curvature Measures in Hermitian Integral Geometry,mial algebra. This is a short way to encode all local kinematic formulas. We then characterize the invariant valuations on complex space forms leaving the space of invariant angular curvature measures fixed.作者: restrain 時(shí)間: 2025-3-25 05:05 作者: Offbeat 時(shí)間: 2025-3-25 09:30 作者: 青石板 時(shí)間: 2025-3-25 15:09 作者: Lipoma 時(shí)間: 2025-3-25 17:41 作者: Chandelier 時(shí)間: 2025-3-25 23:32
Dual Curvature Measures in Hermitian Integral Geometry,ture measures. Building on the recent results from integral geometry in complex space forms, we describe this algebra structure explicitly as a polynomial algebra. This is a short way to encode all local kinematic formulas. We then characterize the invariant valuations on complex space forms leaving作者: 壓迫 時(shí)間: 2025-3-26 04:08 作者: 浮雕寶石 時(shí)間: 2025-3-26 07:45
Crofton Formulae for Tensorial Curvature Measures: The General Case,r generalizations some of which also have continuous extensions to arbitrary convex bodies. In a previous work, we obtained kinematic formulae for all (generalized) tensorial curvature measures. As a consequence of these results, we now derive a complete system of Crofton formulae for such (generali作者: 斜谷 時(shí)間: 2025-3-26 11:40 作者: deriver 時(shí)間: 2025-3-26 13:23
Discrete Centro-Affine Curvature for Convex Polygons,pectively, for polygons. These concepts of affine length are shown to be similar to their counterparts defined for smooth convex bodies in that they satisfy analogous affine isoperimetric type inequalities.作者: 折磨 時(shí)間: 2025-3-26 20:03 作者: Cacophonous 時(shí)間: 2025-3-27 00:24
Crofton Formulae for Tensorial Curvature Measures: The General Case,lize those studied formerly in the context of Crofton-type formulae, and the coefficients involved in these results are substantially less technical and structurally more transparent than in previous works. Finally, we prove that essentially all generalized tensorial curvature measures on convex pol作者: Delirium 時(shí)間: 2025-3-27 03:13 作者: Duodenitis 時(shí)間: 2025-3-27 09:08 作者: 酷熱 時(shí)間: 2025-3-27 12:57
9樓作者: PALMY 時(shí)間: 2025-3-27 17:07
9樓作者: LEER 時(shí)間: 2025-3-27 21:50
9樓作者: 密碼 時(shí)間: 2025-3-28 01:59
10樓作者: Decibel 時(shí)間: 2025-3-28 05:41
10樓作者: 愉快嗎 時(shí)間: 2025-3-28 07:01
10樓作者: 羞辱 時(shí)間: 2025-3-28 13:32
10樓