標題: Titlebook: Analysis on h-Harmonics and Dunkl Transforms; Feng Dai,Yuan Xu,Sergey Tikhonov Textbook 2015 Springer Basel 2015 Dunkl transforms.h-harmon [打印本頁] 作者: gratuity 時間: 2025-3-21 16:25
書目名稱Analysis on h-Harmonics and Dunkl Transforms影響因子(影響力)
書目名稱Analysis on h-Harmonics and Dunkl Transforms影響因子(影響力)學科排名
書目名稱Analysis on h-Harmonics and Dunkl Transforms網(wǎng)絡公開度
書目名稱Analysis on h-Harmonics and Dunkl Transforms網(wǎng)絡公開度學科排名
書目名稱Analysis on h-Harmonics and Dunkl Transforms被引頻次
書目名稱Analysis on h-Harmonics and Dunkl Transforms被引頻次學科排名
書目名稱Analysis on h-Harmonics and Dunkl Transforms年度引用
書目名稱Analysis on h-Harmonics and Dunkl Transforms年度引用學科排名
書目名稱Analysis on h-Harmonics and Dunkl Transforms讀者反饋
書目名稱Analysis on h-Harmonics and Dunkl Transforms讀者反饋學科排名
作者: 鐵砧 時間: 2025-3-21 22:21
2297-0304 sis side of both h-harmonics and Dunkl transforms.Graduate students and researchers working in approximation theory, harmonic analysis, and functional analysis will benefit from this book.978-3-0348-0886-6978-3-0348-0887-3Series ISSN 2297-0304 Series E-ISSN 2297-0312 作者: 材料等 時間: 2025-3-22 01:13 作者: 暫停,間歇 時間: 2025-3-22 07:36 作者: 散布 時間: 2025-3-22 12:05
https://doi.org/10.1007/3-7643-7674-0ernel of the spherical .-harmonics. This expression is an analog of the zonal harmonics, which suggests a definition of a convolution operator, defined in Section 3.3 and it helps us to study various summability methods for spherical .-harmonic expansions.作者: Dysarthria 時間: 2025-3-22 15:03
Dunkl Operators Associated with Reflection Groups,mily of commuting first-order differential and difference operators associated with a reflection group, and are introduced in Section 2.2. The intertwining operator between the Dunkl operators and ordinary derivatives is discussed in Section 2.3.作者: Simulate 時間: 2025-3-22 17:31 作者: 防水 時間: 2025-3-23 00:40
https://doi.org/10.1007/3-7643-7674-0he classical spherical harmonics and the Fourier transform, in which the underlying rotation group is replaced by a finite reflection group. This chapter serves as an introduction, in which we briefly recall classical results on the spherical harmonics and the Fourier transform. Since all results ar作者: 輕浮女 時間: 2025-3-23 02:37
https://doi.org/10.1007/3-7643-7674-0ghted spaces, we start with the definition of a family of weight functions invariant under a reflection group in Section 2.1. Dunkl operators are a family of commuting first-order differential and difference operators associated with a reflection group, and are introduced in Section 2.2. The intertw作者: 一條卷發(fā) 時間: 2025-3-23 05:42 作者: 600 時間: 2025-3-23 13:04
Zimbabwe: DDR by Trial and Error,n the sphere ., which are useful in the embedding theory of function spaces. The multiplier theorem and the Littlewood–Paley inequality established in the prior chapter play crucial roles in their proofs.作者: lobster 時間: 2025-3-23 17:25 作者: FOLLY 時間: 2025-3-23 19:16
The Study of Defence Conversion since 1945,pansions on . and that of the Dunkl transform. This theorem is stated together with some related definitions and notations in Section 7.1. The proof of this transference theorem is, however, rather long, so we split it into three parts, which are given in the Sections 7.2, 7.3, and 7.4, respectively作者: 有偏見 時間: 2025-3-24 00:20
https://doi.org/10.1007/978-3-0348-0887-3Dunkl transforms; h-harmonics; multiplier theorem; reflection groups作者: ingrate 時間: 2025-3-24 03:43 作者: Feature 時間: 2025-3-24 07:58
Sharp Jackson and Sharp Marchaud Inequalities,n the sphere ., which are useful in the embedding theory of function spaces. The multiplier theorem and the Littlewood–Paley inequality established in the prior chapter play crucial roles in their proofs.作者: 大罵 時間: 2025-3-24 13:46
Dunkl Transform,chapter we study the Dunkl transform from the point of view of harmonic analysis. In Section 6.1 we show that the Dunkl transform is an isometry in . space with respect to the measure . on . and it preserves Schwartz class of functions.作者: considerable 時間: 2025-3-24 14:52 作者: paradigm 時間: 2025-3-24 20:42
Textbook 2015ms, in which the usual Lebesgue measure is replaced by a reflection-invariant weighted measure. The authors’ focus is on the analysis side of both h-harmonics and Dunkl transforms.Graduate students and researchers working in approximation theory, harmonic analysis, and functional analysis will benefit from this book.作者: addict 時間: 2025-3-25 02:00 作者: SMART 時間: 2025-3-25 03:22
,Littlewood–Paley Theory and the Multiplier Theorem,The main result of this chapter is a Marcinkiewitcz multiplier theorem for .-harmonic expansions. Its proof uses general Littlewood–Paley theory for a symmetric diffusion semi-group. Several Littlewood–Paley type .-functions are introduced and studied via the Cesàro means for .-harmonic expansions.作者: 粘土 時間: 2025-3-25 08:19
Feng Dai,Yuan Xu,Sergey TikhonovFocusses on the analysis side of h-harmonics and Dunkl transforms.Written in a concise yet informative style.No previous knowledge on reflection groups required作者: NEX 時間: 2025-3-25 15:20
Advanced Courses in Mathematics - CRM Barcelonahttp://image.papertrans.cn/a/image/156479.jpg作者: Omnipotent 時間: 2025-3-25 15:57 作者: oracle 時間: 2025-3-25 22:54 作者: 撤退 時間: 2025-3-26 00:52 作者: Keshan-disease 時間: 2025-3-26 05:40
https://doi.org/10.1007/978-1-349-11527-3chapter we study the Dunkl transform from the point of view of harmonic analysis. In Section 6.1 we show that the Dunkl transform is an isometry in . space with respect to the measure . on . and it preserves Schwartz class of functions.作者: Ganglion 時間: 2025-3-26 09:49 作者: Lacunar-Stroke 時間: 2025-3-26 13:32 作者: 使無效 時間: 2025-3-26 18:14 作者: Limousine 時間: 2025-3-26 23:19 作者: 爭吵 時間: 2025-3-27 03:40
Sharp Jackson and Sharp Marchaud Inequalities,n the sphere ., which are useful in the embedding theory of function spaces. The multiplier theorem and the Littlewood–Paley inequality established in the prior chapter play crucial roles in their proofs.作者: Small-Intestine 時間: 2025-3-27 06:55 作者: Lamina 時間: 2025-3-27 11:47 作者: Banister 時間: 2025-3-27 14:31
8樓作者: Ossification 時間: 2025-3-27 20:36
8樓作者: 可行 時間: 2025-3-27 23:56
9樓作者: Common-Migraine 時間: 2025-3-28 04:35
9樓作者: 吞噬 時間: 2025-3-28 10:13
9樓作者: 群居男女 時間: 2025-3-28 13:15
10樓作者: asthma 時間: 2025-3-28 17:01
10樓作者: lobster 時間: 2025-3-28 18:50
10樓作者: ILEUM 時間: 2025-3-28 23:16
10樓