標(biāo)題: Titlebook: Analysis of the Navier-Stokes Problem; Solution of a Millen Alexander G. Ramm Book 2023Latest edition The Editor(s) (if applicable) and The [打印本頁] 作者: burgeon 時間: 2025-3-21 16:56
書目名稱Analysis of the Navier-Stokes Problem影響因子(影響力)
書目名稱Analysis of the Navier-Stokes Problem影響因子(影響力)學(xué)科排名
書目名稱Analysis of the Navier-Stokes Problem網(wǎng)絡(luò)公開度
書目名稱Analysis of the Navier-Stokes Problem網(wǎng)絡(luò)公開度學(xué)科排名
書目名稱Analysis of the Navier-Stokes Problem被引頻次
書目名稱Analysis of the Navier-Stokes Problem被引頻次學(xué)科排名
書目名稱Analysis of the Navier-Stokes Problem年度引用
書目名稱Analysis of the Navier-Stokes Problem年度引用學(xué)科排名
書目名稱Analysis of the Navier-Stokes Problem讀者反饋
書目名稱Analysis of the Navier-Stokes Problem讀者反饋學(xué)科排名
作者: SCORE 時間: 2025-3-21 23:13
Book 2023Latest editionl positive times. By proving the?NSP paradox, this book provides a solution to?the?millennium problem concerning the?Navier-Stokes Equations and shows that they are physically and mathematically contradictive..作者: 音樂戲劇 時間: 2025-3-22 03:21
1938-1743 oundaries.Proves that the Navier-Stokes equations are physic.This book revises and expands upon the?prior edition,? The?Navier-Stokes Problem. The?focus of?this book is to?provide a mathematical analysis of?the?Navier-Stokes Problem (NSP) in R^3 without boundaries.? Before delving into?analysis, the作者: 新奇 時間: 2025-3-22 06:41 作者: 螢火蟲 時間: 2025-3-22 09:11
Les Gallo-Silver,David Bimbi,Michael Rembis.. Taking the Laplace transform of (.) one gets . where formula (A2.13) was used: . Here . is the gamma function and formula (.) is valid classically for .; this formula is valid for all complex . except ., by analytic continuation with respect to . because . is analytic in . except for the points .作者: Melatonin 時間: 2025-3-22 15:51
Analysis of the Navier-Stokes Problem978-3-031-30723-2Series ISSN 1938-1743 Series E-ISSN 1938-1751 作者: Capture 時間: 2025-3-22 17:38 作者: tympanometry 時間: 2025-3-23 00:58 作者: Nebulizer 時間: 2025-3-23 02:43
https://doi.org/10.1057/978-1-137-48769-8The NSP consists of solving the following equations. .where ..作者: 藐視 時間: 2025-3-23 06:48
Les Gallo-Silver,David Bimbi,Michael RembisOne of the . estimates was formulated and proved in Lemma?., namely, estimate (.): . where .(.,?.) is a solution to the NSP (.)–(.). It was proved under the assumption . The other basic . estimate is formulated in Theorem?.. Let us use this result and the Parseval’s equation to derive the following theorem.作者: Acetaldehyde 時間: 2025-3-23 10:49
https://doi.org/10.1057/978-1-137-48769-8There is at most one solution in . of the NSP (.)–(.). To prove uniqueness of the solution to the NSP assume that . and . solve Eq.?(.). Let .. We have (with . and . the convolution in .) . so . One has . By inequalities (.), (.), and (.), one gets from (.) the inequality: . Take the norm . of both parts of inequality (.) and get . Denote ..作者: GUILT 時間: 2025-3-23 16:51
https://doi.org/10.1057/978-1-137-48769-8Let the assumption (1.15) p. 4 hold. In this chapter we prove that the NSP (3.1)–(3.3) implies the following.作者: 咒語 時間: 2025-3-23 21:05 作者: Defiance 時間: 2025-3-24 02:05
Introduction,In this work a proof of the author’s basic results concerning the Navier-Stokes problem (NSP) is given.作者: LEVY 時間: 2025-3-24 04:53 作者: 雕鏤 時間: 2025-3-24 10:18
,Statement of the Navier–Stokes Problem,The NSP consists of solving the following equations. .where ..作者: Glucose 時間: 2025-3-24 13:06 作者: 撕裂皮肉 時間: 2025-3-24 17:44 作者: BOLT 時間: 2025-3-24 20:20 作者: Accomplish 時間: 2025-3-24 23:16
Logical Analysis of Our Proof,The NSP is formulated in Eq.?(.).作者: slipped-disk 時間: 2025-3-25 07:21
Alexander G. RammExplains the background and history of the Navier-Stokes Problem.Provides mathematical analysis of the Navier-Stokes Problem in R3 without boundaries.Proves that the Navier-Stokes equations are physic作者: 詞匯記憶方法 時間: 2025-3-25 10:45
Synthesis Lectures on Mathematics & Statisticshttp://image.papertrans.cn/a/image/156476.jpg作者: anesthesia 時間: 2025-3-25 14:14
https://doi.org/10.1007/978-3-031-30723-2Navier-Stokes Problem; Convolution Integral Equations; Hyper-Singular Kernels; Partial Differential Equ作者: 易受騙 時間: 2025-3-25 18:54 作者: oxidant 時間: 2025-3-25 20:36 作者: Figate 時間: 2025-3-26 02:45
5樓作者: 煩憂 時間: 2025-3-26 06:04
6樓作者: 恃強凌弱 時間: 2025-3-26 10:12
6樓作者: FEAT 時間: 2025-3-26 15:43
6樓作者: 毛細血管 時間: 2025-3-26 19:36
6樓作者: liposuction 時間: 2025-3-26 21:32
7樓作者: 充足 時間: 2025-3-27 03:53
7樓作者: 異端邪說下 時間: 2025-3-27 07:04
7樓作者: 異端邪說下 時間: 2025-3-27 11:06
7樓作者: 反復(fù)無常 時間: 2025-3-27 15:52
8樓作者: 歌唱隊 時間: 2025-3-27 19:39
8樓作者: 繁忙 時間: 2025-3-28 01:16
8樓作者: gratify 時間: 2025-3-28 04:53
8樓作者: 不要不誠實 時間: 2025-3-28 08:40
9樓作者: 笨拙的你 時間: 2025-3-28 12:29
9樓作者: GLADE 時間: 2025-3-28 18:25
9樓作者: 雪白 時間: 2025-3-28 22:11
10樓作者: MENT 時間: 2025-3-29 00:55
10樓作者: 前奏曲 時間: 2025-3-29 07:08
10樓作者: DEVIL 時間: 2025-3-29 10:03
10樓