派博傳思國際中心

標題: Titlebook: Analysis of Symbolic Data; Exploratory Methods Hans-Hermann Bock,Edwin Diday Conference proceedings 2000 Springer-Verlag Berlin Heidelberg [打印本頁]

作者: Hypothesis    時間: 2025-3-21 17:48
書目名稱Analysis of Symbolic Data影響因子(影響力)




書目名稱Analysis of Symbolic Data影響因子(影響力)學科排名




書目名稱Analysis of Symbolic Data網絡公開度




書目名稱Analysis of Symbolic Data網絡公開度學科排名




書目名稱Analysis of Symbolic Data被引頻次




書目名稱Analysis of Symbolic Data被引頻次學科排名




書目名稱Analysis of Symbolic Data年度引用




書目名稱Analysis of Symbolic Data年度引用學科排名




書目名稱Analysis of Symbolic Data讀者反饋




書目名稱Analysis of Symbolic Data讀者反饋學科排名





作者: 遺產    時間: 2025-3-21 21:28

作者: condone    時間: 2025-3-22 04:17

作者: 幻想    時間: 2025-3-22 05:07
Lars Holtkamp,Nils Arne Brockmannmplex type of data which we call . as they contain . and they are . In this context, we have a rapidly increasing need to extend standard data analysis methods (exploratory, graphical representations, clustering, factorial analysis, discrimination,…) to these symbolic data.
作者: 刺激    時間: 2025-3-22 12:08

作者: Assignment    時間: 2025-3-22 14:45
https://doi.org/10.1007/978-3-322-80430-3se similarities as their data input. For example, in cluster analysis where we look for ‘homogeneous’ classes ., .,… of objects, it is typically required that pairs of objects from the . class have a . similarity (i.e., a . dissimilarity) and, conversely, that the similarity is . for pairs of objects from. classes (see Section 11.1).
作者: 匯總    時間: 2025-3-22 20:50

作者: calamity    時間: 2025-3-23 01:15
Symbolic Data Analysis and the SODAS Project: Purpose, History, Perspective,mplex type of data which we call . as they contain . and they are . In this context, we have a rapidly increasing need to extend standard data analysis methods (exploratory, graphical representations, clustering, factorial analysis, discrimination,…) to these symbolic data.
作者: 中和    時間: 2025-3-23 01:51

作者: 壯觀的游行    時間: 2025-3-23 06:23
Similarity and Dissimilarity,se similarities as their data input. For example, in cluster analysis where we look for ‘homogeneous’ classes ., .,… of objects, it is typically required that pairs of objects from the . class have a . similarity (i.e., a . dissimilarity) and, conversely, that the similarity is . for pairs of objects from. classes (see Section 11.1).
作者: 壓倒性勝利    時間: 2025-3-23 12:17
Illustrative Benchmark Analyses,the National Statistical Institute (INE) of Portugal, the Instituto Vasco de Estadistica Euskal (EUSTAT) from Spain, the Office For National Statistics (ONS) from the United Kingdom, the Inspection Générale de la Sécurité Sociale (IGSS) from Luxembourg and marginally the University of Athens..
作者: STENT    時間: 2025-3-23 17:02
Lars Holtkamp,Nils Arne Brockmannual resulted in just one single ‘value’ or ‘category’ such as in the statements: ‘the height of a person is 170 cm’, ‘the colour of a car is red’ etc. Depending on the situation, these variables were classified into . (continuous or discrete) and . (ordinal or nominal) ones.
作者: 使虛弱    時間: 2025-3-23 19:56
Direkte Demokratie in Deutschland,sses. Here, we focus on the . from a classical dataset extracted from a relational database. We also define a . which aims at reducing over-generalization. Finally, we present how to build a symbolic dataset from several datasets by applying a .
作者: BARGE    時間: 2025-3-24 01:38

作者: 情感脆弱    時間: 2025-3-24 05:24
Conference proceedings 2000tical statistical exploitation and analysis of official statistical data. This chapter aims to report briefly on these activities by presenting some signifi- cant insights into practical results obtained by the benchmark partners in using the SODAS software package as described in chapter 14 below.
作者: lattice    時間: 2025-3-24 07:02
The Classical Data Situation,ual resulted in just one single ‘value’ or ‘category’ such as in the statements: ‘the height of a person is 170 cm’, ‘the colour of a car is red’ etc. Depending on the situation, these variables were classified into . (continuous or discrete) and . (ordinal or nominal) ones.
作者: 鉗子    時間: 2025-3-24 13:38
Generation of Symbolic Objects from Relational Databases,sses. Here, we focus on the . from a classical dataset extracted from a relational database. We also define a . which aims at reducing over-generalization. Finally, we present how to build a symbolic dataset from several datasets by applying a .
作者: Isthmus    時間: 2025-3-24 17:19
Symbolic Factor Analysis,ipal component analysis (PCA), the proposed method visualizes each object . by a . in .. Whereas the classical PCA is briefly sketched in section 9.1, we describe our generalized method in section 9.2. Thereby, we present a typical example concerning oils and fats in order to illustrate the effectiveness of the proposed symbolic PCA method.
作者: 多山    時間: 2025-3-24 22:57
Conference proceedings 2000apters of this book. It was accompanied by a series of benchmark activities involving some official statistical institutes throughout Europe. Partners in these benchmark activities were the National Statistical Institute (INE) of Portugal, the Instituto Vasco de Estadistica Euskal (EUSTAT) from Spai
作者: cruise    時間: 2025-3-25 01:08

作者: 想象    時間: 2025-3-25 06:18
978-3-540-66619-6Springer-Verlag Berlin Heidelberg 2000
作者: Jargon    時間: 2025-3-25 11:00

作者: 意外的成功    時間: 2025-3-25 15:07

作者: 卜聞    時間: 2025-3-25 16:20
Symbolic Approaches for Three-way Data,at different time points . = 1,…, . This implies three-way data, i.e. a sequence .,…,.of . two-dimensional . data arrays., = (X. where . indexes individuals and . indexes variables. The investigation of such data requires to adapt and generalize classical and symbolic data analysis methods to the case of time series.
作者: prolate    時間: 2025-3-25 21:58
Zur Methodik der direkten Blutdruckmessung,In Chapter 2, we have described the classical data analysis paradigm: a rectangular data matrix .defines the relation between the set Ω = {1,…, .}of . or . and a series of variables .,…, ., where each variable . assumes . category from a range . such that each cell (.) of the data matrix.contains one single value x. only.
作者: 自作多情    時間: 2025-3-26 02:35
,Druckmessung im K?rperkreislauf,In the previous Chapter, we have presented various types of symbolic data. We recall that these data types are generalizations of classical data types in the following respects:
作者: Blood-Clot    時間: 2025-3-26 04:55

作者: 簡略    時間: 2025-3-26 11:16
https://doi.org/10.1007/978-3-531-90900-4SODAS is a modular software in which each statistical method is manipulated as an . and icons are linked in a . A . is a module of statistical computation which is predefined in SODAS. A method is inserted (or suppressed) in a chaining using the ‘drag and drop’ procedure between two windows: the . and the .
作者: 瑣事    時間: 2025-3-26 14:30
Symbolic Data,In Chapter 2, we have described the classical data analysis paradigm: a rectangular data matrix .defines the relation between the set Ω = {1,…, .}of . or . and a series of variables .,…, ., where each variable . assumes . category from a range . such that each cell (.) of the data matrix.contains one single value x. only.
作者: 踉蹌    時間: 2025-3-26 17:17

作者: prostate-gland    時間: 2025-3-27 00:58
Discrimination: Assigning Symbolic Objects to Classes,Kernel density estimation is a tool which allows the statistician to construct a density on any sample of data. Recent references on density estimation with a probabilistic background are numerous (e.g., books by Hand 1982, Silverman 1986, Devroye 1985). These methods compute a weighted sum of kernels centered on each data point.
作者: 使饑餓    時間: 2025-3-27 02:54
The SODAS Software Package,SODAS is a modular software in which each statistical method is manipulated as an . and icons are linked in a . A . is a module of statistical computation which is predefined in SODAS. A method is inserted (or suppressed) in a chaining using the ‘drag and drop’ procedure between two windows: the . and the .
作者: 全等    時間: 2025-3-27 08:30

作者: 鞭打    時間: 2025-3-27 13:10

作者: Venules    時間: 2025-3-27 14:41
Direkte Demokratie in Deutschland,itions and the related terminology by many examples. Thereby we have emphasized the . where symbolic objects were created quite naturally when aggregating single individuals (described by classical single-valued variables) into classes, and describing the more or less complex properties of these cla
作者: 皺痕    時間: 2025-3-27 20:53

作者: 難取悅    時間: 2025-3-27 23:49

作者: Legion    時間: 2025-3-28 03:52

作者: 太空    時間: 2025-3-28 08:28
Lars P. Feld,Gebhard Kirchg?ssnerype (Chouakria 1994, 1995, Cazes 1997; see section 3.2). Each ‘value’ .is an interval containing all the possible values of the feature .. for an object . ∈ . (or . ∈ Ω). Instead of representing each object . and its description . by a single point on a factorial plane in.(or .)as in classical princ
作者: BROW    時間: 2025-3-28 11:37

作者: 臭了生氣    時間: 2025-3-28 15:14
Direkte Demokratie in Deutschland,at different time points . = 1,…, . This implies three-way data, i.e. a sequence .,…,.of . two-dimensional . data arrays., = (X. where . indexes individuals and . indexes variables. The investigation of such data requires to adapt and generalize classical and symbolic data analysis methods to the ca
作者: 玉米    時間: 2025-3-28 21:14
Direkte Demokratie in Deutschland,ied by a series of benchmark activities involving some official statistical institutes throughout Europe. Partners in these benchmark activities were the National Statistical Institute (INE) of Portugal, the Instituto Vasco de Estadistica Euskal (EUSTAT) from Spain, the Office For National Statistic
作者: 比喻好    時間: 2025-3-29 00:52

作者: 史前    時間: 2025-3-29 04:04

作者: convert    時間: 2025-3-29 10:53
Direkte Demokratie in Deutschland,at different time points . = 1,…, . This implies three-way data, i.e. a sequence .,…,.of . two-dimensional . data arrays., = (X. where . indexes individuals and . indexes variables. The investigation of such data requires to adapt and generalize classical and symbolic data analysis methods to the case of time series.
作者: conduct    時間: 2025-3-29 13:49

作者: Ledger    時間: 2025-3-29 16:18

作者: FLOAT    時間: 2025-3-29 20:15
Generation of Symbolic Objects from Relational Databases,itions and the related terminology by many examples. Thereby we have emphasized the . where symbolic objects were created quite naturally when aggregating single individuals (described by classical single-valued variables) into classes, and describing the more or less complex properties of these cla
作者: dissent    時間: 2025-3-30 03:39
Descriptive Statistics for Symbolic Data,uch as the . the empirical standard deviation and the median, to the general framework of . variables. We denote by .={1,…, .} the set of units that are described by . symbolic variables .,…, .. The domain of each variable . for . = 1,…, ., is denoted by . and . = ×. denotes the whole domain space.
作者: Indigence    時間: 2025-3-30 04:52
Visualizing and Editing Symbolic Objects, information in large and complex information spaces. Symbolic objects are a new type of statistical data that are characterized by their complexity. Therefore, it was necessary to design a corresponding graphical representation that allows all the necessary information to be concisely visualised wi
作者: 過渡時期    時間: 2025-3-30 08:51

作者: febrile    時間: 2025-3-30 15:45
Symbolic Factor Analysis,ype (Chouakria 1994, 1995, Cazes 1997; see section 3.2). Each ‘value’ .is an interval containing all the possible values of the feature .. for an object . ∈ . (or . ∈ Ω). Instead of representing each object . and its description . by a single point on a factorial plane in.(or .)as in classical princ
作者: mitten    時間: 2025-3-30 18:08

作者: 孵卵器    時間: 2025-3-30 23:40
Symbolic Approaches for Three-way Data,at different time points . = 1,…, . This implies three-way data, i.e. a sequence .,…,.of . two-dimensional . data arrays., = (X. where . indexes individuals and . indexes variables. The investigation of such data requires to adapt and generalize classical and symbolic data analysis methods to the ca
作者: 牌帶來    時間: 2025-3-31 04:03
Illustrative Benchmark Analyses,ied by a series of benchmark activities involving some official statistical institutes throughout Europe. Partners in these benchmark activities were the National Statistical Institute (INE) of Portugal, the Instituto Vasco de Estadistica Euskal (EUSTAT) from Spain, the Office For National Statistic
作者: ear-canal    時間: 2025-3-31 05:57

作者: EXTOL    時間: 2025-3-31 09:23
Interaktionsprozesse: Sprache, Bild und Gesellschaft in humoristischer Werbung einen handlungspragmatischen Zugang, um Printanzeigen von Sixt mit nicht autorisierten Bildnissen von ?ffentlich bekannten Personen daraufhin zu untersuchen, mit welchen Mitteln das Werbeziel erreicht werden soll und inwiefern der Humor in der Werbung zu einer ernsten Sache werden kann, wenn er in
作者: 強所    時間: 2025-3-31 16:44
Association Rules in Small Databases,ween the two languages. Next, we will review a simple VB 2005 program to get an idea of the programmatic structure in .NET and wrap up with a summary of what’s new for current VB programmers in this latest and greatest version, VB 2005.
作者: aristocracy    時間: 2025-3-31 20:19

作者: BOOST    時間: 2025-4-1 00:43
Accounting and Accountability in Local Government: A Framework,ll be useful”. Lüder (1992) has shown that the existing cross-country variations in government accounting models stem from environmental pressures and from the needs of external and internal users. This paper focuses on the relationship between the goals assigned to local government (LG) accounting




歡迎光臨 派博傳思國際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
崇明县| 龙江县| 砀山县| 屯留县| 邵阳市| 封丘县| 雷山县| 宁城县| 通海县| 宣威市| 峨山| 奉化市| 沅陵县| 南陵县| 化州市| 旺苍县| 阳城县| 民乐县| 平和县| 盈江县| 巨野县| 墨竹工卡县| 海盐县| 抚顺县| 阿拉尔市| 三明市| 灵石县| 嘉黎县| 吉木萨尔县| 汶上县| 通州区| 南充市| 建宁县| 广东省| 邵东县| 澄迈县| 漳州市| 林甸县| 朔州市| 大港区| 麻江县|