標(biāo)題: Titlebook: An Invitation to Quantum Cohomology; Kontsevich‘s Formula Joachim Kock,Israel Vainsencher Textbook 2007 Birkh?user Boston 2007 Grad.algebra [打印本頁(yè)] 作者: injurious 時(shí)間: 2025-3-21 16:07
書目名稱An Invitation to Quantum Cohomology影響因子(影響力)
書目名稱An Invitation to Quantum Cohomology影響因子(影響力)學(xué)科排名
書目名稱An Invitation to Quantum Cohomology網(wǎng)絡(luò)公開(kāi)度
書目名稱An Invitation to Quantum Cohomology網(wǎng)絡(luò)公開(kāi)度學(xué)科排名
書目名稱An Invitation to Quantum Cohomology被引頻次
書目名稱An Invitation to Quantum Cohomology被引頻次學(xué)科排名
書目名稱An Invitation to Quantum Cohomology年度引用
書目名稱An Invitation to Quantum Cohomology年度引用學(xué)科排名
書目名稱An Invitation to Quantum Cohomology讀者反饋
書目名稱An Invitation to Quantum Cohomology讀者反饋學(xué)科排名
作者: Antecedent 時(shí)間: 2025-3-21 22:21 作者: Cholecystokinin 時(shí)間: 2025-3-22 03:06
R. Beer,G. C. Loeschcke,G. Fank,Ch. Hechte shall not go into the detail of the construction of ., but content ourselves with the cases .≤5. The combinatorics of the boundary deserves a careful description. The principal reference for this chapter is Knudsen [51]; see also Keel [47].作者: Patrimony 時(shí)間: 2025-3-22 06:26
F. Hoffmeister,E. Grünvogel,W. Wirthromov-Witten potential. The striking fact about all these equations is that they amount to the associativity of the quantum product! In particular, Kontsevich’s formula is equivalent to associativity of the quantum product of ..作者: 造反,叛亂 時(shí)間: 2025-3-22 09:00 作者: ADJ 時(shí)間: 2025-3-22 13:27
Quantum Cohomology,romov-Witten potential. The striking fact about all these equations is that they amount to the associativity of the quantum product! In particular, Kontsevich’s formula is equivalent to associativity of the quantum product of ..作者: AWE 時(shí)間: 2025-3-22 20:14
An Invitation to Quantum Cohomology978-0-8176-4495-6Series ISSN 0743-1643 Series E-ISSN 2296-505X 作者: 外面 時(shí)間: 2025-3-23 00:47 作者: ARK 時(shí)間: 2025-3-23 03:28
https://doi.org/10.1007/978-0-8176-4495-6Grad; algebraic geometry; cohomology; homology; moduli space作者: 相同 時(shí)間: 2025-3-23 08:52 作者: nutrients 時(shí)間: 2025-3-23 11:52 作者: 出生 時(shí)間: 2025-3-23 17:45
R. Beer,G. C. Loeschcke,G. Fank,Ch. Hechtnherited from ., the important Deligne-Mumford-Knudsen moduli space of stable .-pointed rational curves which are the subject of this first chapter. We shall not go into the detail of the construction of ., but content ourselves with the cases .≤5. The combinatorics of the boundary deserves a carefu作者: 鄙視 時(shí)間: 2025-3-23 18:26
F. Hoffmeister,E. Grünvogel,W. Wirthdefine a . on .. Kontsevich’s formula and the other recursions we found in Chapter 4, are then interpreted as partial differential equations for the Gromov-Witten potential. The striking fact about all these equations is that they amount to the associativity of the quantum product! In particular, Ko作者: pacifist 時(shí)間: 2025-3-24 01:31 作者: 吸氣 時(shí)間: 2025-3-24 06:13 作者: tinnitus 時(shí)間: 2025-3-24 06:52
Progress in Mathematicshttp://image.papertrans.cn/a/image/155646.jpg作者: 人工制品 時(shí)間: 2025-3-24 14:06 作者: 不斷的變動(dòng) 時(shí)間: 2025-3-24 18:48 作者: Ischemia 時(shí)間: 2025-3-24 19:05 作者: 良心 時(shí)間: 2025-3-25 00:44 作者: 沙漠 時(shí)間: 2025-3-25 05:26
Prologue: Warming Up with Cross Ratios, and the Definition of Moduli Space,Throughout this book we work over the field of complex numbers. When we speak of schemes we mean schemes of finite type over Spec ?.作者: 我正派 時(shí)間: 2025-3-25 09:15 作者: MAG 時(shí)間: 2025-3-25 12:22 作者: 青少年 時(shí)間: 2025-3-25 15:52
,Gromov—Witten Invariants,The intersection numbers resulting from an ideal transverse situation as in Proposition 3.4.3. are the (genus-0) .. In Section 4.2 we establish the basic properties of Gromov-Witten invariants, and in 4.3 and 4.4 we describe recursive relations among them, allowing for their computation.作者: 終點(diǎn) 時(shí)間: 2025-3-25 22:51 作者: Foregery 時(shí)間: 2025-3-26 04:08
Stable ,-pointed Curves,nherited from ., the important Deligne-Mumford-Knudsen moduli space of stable .-pointed rational curves which are the subject of this first chapter. We shall not go into the detail of the construction of ., but content ourselves with the cases .≤5. The combinatorics of the boundary deserves a carefu作者: 官僚統(tǒng)治 時(shí)間: 2025-3-26 07:45
Quantum Cohomology,define a . on .. Kontsevich’s formula and the other recursions we found in Chapter 4, are then interpreted as partial differential equations for the Gromov-Witten potential. The striking fact about all these equations is that they amount to the associativity of the quantum product! In particular, Ko作者: conjunctivitis 時(shí)間: 2025-3-26 09:46 作者: 親屬 時(shí)間: 2025-3-26 14:29 作者: Tortuous 時(shí)間: 2025-3-26 16:48
Conference proceedings 2016and Intelligent RecognitionSystems (SIRS-2015), December 16-19, 2015, Trivandrum, India. The programcommittee received 175 submissions. Each paper was peer reviewed by at leastthree or more independent referees of the program committee and the 59 paperswere finally selected. The papers offer stimula作者: objection 時(shí)間: 2025-3-26 21:39 作者: Congregate 時(shí)間: 2025-3-27 04:10 作者: 有權(quán)威 時(shí)間: 2025-3-27 07:27 作者: 劇毒 時(shí)間: 2025-3-27 11:46 作者: 其他 時(shí)間: 2025-3-27 14:46 作者: 廚師 時(shí)間: 2025-3-27 19:35 作者: Patrimony 時(shí)間: 2025-3-27 23:27
Kapitel VI Grundlagen der ModerneWe will deal with primary abelian groups in the universe V = L. Our main result will fill in a missing theorem on endomorphism rings. ., we have the two parallel results on torsion-free respectively primary abelian groups; see [DG 2, 3, 4] and [CG].作者: 暫時(shí)中止 時(shí)間: 2025-3-28 03:17 作者: Barrister 時(shí)間: 2025-3-28 06:16