派博傳思國(guó)際中心

標(biāo)題: Titlebook: An Introduction to the K?hler-Ricci Flow; Sebastien Boucksom,Philippe Eyssidieux,Vincent Gue Book 2013 Springer International Publishing S [打印本頁(yè)]

作者: minuscule    時(shí)間: 2025-3-21 18:07
書目名稱An Introduction to the K?hler-Ricci Flow影響因子(影響力)




書目名稱An Introduction to the K?hler-Ricci Flow影響因子(影響力)學(xué)科排名




書目名稱An Introduction to the K?hler-Ricci Flow網(wǎng)絡(luò)公開(kāi)度




書目名稱An Introduction to the K?hler-Ricci Flow網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱An Introduction to the K?hler-Ricci Flow被引頻次




書目名稱An Introduction to the K?hler-Ricci Flow被引頻次學(xué)科排名




書目名稱An Introduction to the K?hler-Ricci Flow年度引用




書目名稱An Introduction to the K?hler-Ricci Flow年度引用學(xué)科排名




書目名稱An Introduction to the K?hler-Ricci Flow讀者反饋




書目名稱An Introduction to the K?hler-Ricci Flow讀者反饋學(xué)科排名





作者: 長(zhǎng)矛    時(shí)間: 2025-3-21 20:42
0075-8434 K?hler-Ricci flow.The first book to present a complete proo.This volume collects lecture notes from courses offered at several conferences and workshops, and provides the first exposition in book form of the basic theory of the K?hler-Ricci flow and its current state-of-the-art. While several excel
作者: 新手    時(shí)間: 2025-3-22 03:12

作者: beta-cells    時(shí)間: 2025-3-22 04:34

作者: graphy    時(shí)間: 2025-3-22 11:07
,Technologien für Digitalisierungsl?sungen,ference talks, including “Einstein Manifolds and Beyond” at CIRM (Marseille—Luminy, fall 2007), “Program on Extremal K?hler Metrics and K?hler–Ricci Flow” at the De Giorgi Center (Pisa, spring 2008), and “Analytic Aspects of Algebraic and Complex Geometry” at CIRM (Marseille— Luminy, spring 2011).
作者: 鴕鳥(niǎo)    時(shí)間: 2025-3-22 15:34
,The K?hler–Ricci Flow on Fano Manifolds,ference talks, including “Einstein Manifolds and Beyond” at CIRM (Marseille—Luminy, fall 2007), “Program on Extremal K?hler Metrics and K?hler–Ricci Flow” at the De Giorgi Center (Pisa, spring 2008), and “Analytic Aspects of Algebraic and Complex Geometry” at CIRM (Marseille— Luminy, spring 2011).
作者: PALSY    時(shí)間: 2025-3-22 18:06

作者: ARIA    時(shí)間: 2025-3-22 23:26
,An Introduction to the K?hler–Ricci Flow,or the flow, convergence on manifolds with negative and zero first Chern class, and behavior of the flow in the case when the canonical bundle is big and nef. We also discuss the collapsing of the K?hler–Ricci flow on the product of a torus and a Riemann surface of genus greater than one. Finally, w
作者: 蚊帳    時(shí)間: 2025-3-23 01:59
,Regularizing Properties of the K?hler–Ricci Flow,zing the work of Song and Tian on this topic. This result is applied to construct a K?hler–Ricci flow on varieties with log terminal singularities, in connection with the Minimal Model Program. The same circle of ideas is also used to prove a regularity result for elliptic complex Monge–Ampère equat
作者: 斜谷    時(shí)間: 2025-3-23 08:10

作者: 艦旗    時(shí)間: 2025-3-23 09:41
,Convergence of the K?hler–Ricci Flow on a K?hler–Einstein Fano Manifold, automorphism group, the normalized K?hler–Ricci flow converges smoothly to the unique K?hler–Einstein metric. We also explain an alternative approach due to Berman–Boucksom–Eyssidieux–Guedj–Zeriahi, which only yields weak convergence but also applies to Fano varieties with log terminal singularitie
作者: 他很靈活    時(shí)間: 2025-3-23 16:59
Einleitung und Problemstellung,efficients, some existence, uniqueness and regularity results for viscosity solutions of fully nonlinear parabolic equations (including degenerate ones), the Harnack inequality for fully nonlinear uniformly parabolic equations.
作者: 使成波狀    時(shí)間: 2025-3-23 20:03

作者: 河潭    時(shí)間: 2025-3-23 22:41

作者: 愛(ài)得痛了    時(shí)間: 2025-3-24 06:13
,Technologien für Digitalisierungsl?sungen,F in its first 20 years (1984–2003), especially an essentially self-contained exposition of Perelman’s uniform estimates on the scalar curvature, the diameter, and the Ricci potential function for the normalized K?hler–Ricci flow (NKRF), including the monotonicity of Perelman’s .-entropy and .-nonco
作者: GNAW    時(shí)間: 2025-3-24 09:04
Roadmap einer nachhaltigen Digitalisierung, automorphism group, the normalized K?hler–Ricci flow converges smoothly to the unique K?hler–Einstein metric. We also explain an alternative approach due to Berman–Boucksom–Eyssidieux–Guedj–Zeriahi, which only yields weak convergence but also applies to Fano varieties with log terminal singularitie
作者: 描述    時(shí)間: 2025-3-24 14:04

作者: 動(dòng)物    時(shí)間: 2025-3-24 15:18

作者: commonsense    時(shí)間: 2025-3-24 19:52

作者: 有幫助    時(shí)間: 2025-3-25 00:35
Roadmap einer nachhaltigen Digitalisierung, automorphism group, the normalized K?hler–Ricci flow converges smoothly to the unique K?hler–Einstein metric. We also explain an alternative approach due to Berman–Boucksom–Eyssidieux–Guedj–Zeriahi, which only yields weak convergence but also applies to Fano varieties with log terminal singularities.
作者: Original    時(shí)間: 2025-3-25 04:44

作者: countenance    時(shí)間: 2025-3-25 10:47
Introduction,This book is the first comprehensive reference on the K?hler–Ricci flow. It provides an introduction to fully non-linear parabolic equations, to the K?hler–Ricci flow in general and to Perelman’s estimates in the Fano case, and also presents the connections with the Minimal Model program.
作者: coltish    時(shí)間: 2025-3-25 12:06
An Introduction to Fully Nonlinear Parabolic Equations,efficients, some existence, uniqueness and regularity results for viscosity solutions of fully nonlinear parabolic equations (including degenerate ones), the Harnack inequality for fully nonlinear uniformly parabolic equations.
作者: altruism    時(shí)間: 2025-3-25 18:14

作者: innate    時(shí)間: 2025-3-25 22:33

作者: indignant    時(shí)間: 2025-3-26 01:39

作者: Introvert    時(shí)間: 2025-3-26 04:47

作者: LAPSE    時(shí)間: 2025-3-26 09:59
Sebastien Boucksom,Philippe Eyssidieux,Vincent GueAn educational and up-to-date reference work on non-linear parabolic partial differential equations.The only book currently available on the K?hler-Ricci flow.The first book to present a complete proo
作者: 記成螞蟻    時(shí)間: 2025-3-26 13:02

作者: AGATE    時(shí)間: 2025-3-26 19:23
0075-8434 on K?hler-Einstein manifolds of positive scalar curvature (Fano manifolds). Shortly after, G. Tian and J. Song discovered a complex analogue of Perelman’s ideas: the K?hler-Ricci flow is a metric embodiment of978-3-319-00818-9978-3-319-00819-6Series ISSN 0075-8434 Series E-ISSN 1617-9692
作者: Crater    時(shí)間: 2025-3-26 21:34
Book 2013 spin-off of his breakthrough, G. Perelman proved the convergence of the K?hler-Ricci flow on K?hler-Einstein manifolds of positive scalar curvature (Fano manifolds). Shortly after, G. Tian and J. Song discovered a complex analogue of Perelman’s ideas: the K?hler-Ricci flow is a metric embodiment of
作者: 浮雕寶石    時(shí)間: 2025-3-27 01:51
9樓
作者: AWE    時(shí)間: 2025-3-27 09:15
9樓
作者: 向前變橢圓    時(shí)間: 2025-3-27 09:40
9樓
作者: STALL    時(shí)間: 2025-3-27 15:45
10樓
作者: Modicum    時(shí)間: 2025-3-27 20:07
10樓
作者: 啪心兒跳動(dòng)    時(shí)間: 2025-3-28 00:15
10樓
作者: fibula    時(shí)間: 2025-3-28 06:07
10樓




歡迎光臨 派博傳思國(guó)際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
云浮市| 扎兰屯市| 永顺县| 南京市| 广昌县| 新平| 小金县| 安徽省| 达孜县| 合作市| 扶余县| 扎鲁特旗| 长丰县| 芒康县| 璧山县| 卫辉市| 神池县| 屏山县| 珠海市| 宁海县| 太原市| 水城县| 鹿泉市| 九江市| 神池县| 广汉市| 辽中县| 南平市| 工布江达县| 汉沽区| 荣昌县| 开远市| 镇宁| 沾化县| 英德市| 错那县| 建湖县| 鹤山市| 开封县| 嘉定区| 安丘市|