標(biāo)題: Titlebook: An Introduction to the K?hler-Ricci Flow; Sebastien Boucksom,Philippe Eyssidieux,Vincent Gue Book 2013 Springer International Publishing S [打印本頁(yè)] 作者: minuscule 時(shí)間: 2025-3-21 18:07
書目名稱An Introduction to the K?hler-Ricci Flow影響因子(影響力)
書目名稱An Introduction to the K?hler-Ricci Flow影響因子(影響力)學(xué)科排名
書目名稱An Introduction to the K?hler-Ricci Flow網(wǎng)絡(luò)公開(kāi)度
書目名稱An Introduction to the K?hler-Ricci Flow網(wǎng)絡(luò)公開(kāi)度學(xué)科排名
書目名稱An Introduction to the K?hler-Ricci Flow被引頻次
書目名稱An Introduction to the K?hler-Ricci Flow被引頻次學(xué)科排名
書目名稱An Introduction to the K?hler-Ricci Flow年度引用
書目名稱An Introduction to the K?hler-Ricci Flow年度引用學(xué)科排名
書目名稱An Introduction to the K?hler-Ricci Flow讀者反饋
書目名稱An Introduction to the K?hler-Ricci Flow讀者反饋學(xué)科排名
作者: 長(zhǎng)矛 時(shí)間: 2025-3-21 20:42
0075-8434 K?hler-Ricci flow.The first book to present a complete proo.This volume collects lecture notes from courses offered at several conferences and workshops, and provides the first exposition in book form of the basic theory of the K?hler-Ricci flow and its current state-of-the-art. While several excel作者: 新手 時(shí)間: 2025-3-22 03:12 作者: beta-cells 時(shí)間: 2025-3-22 04:34 作者: graphy 時(shí)間: 2025-3-22 11:07
,Technologien für Digitalisierungsl?sungen,ference talks, including “Einstein Manifolds and Beyond” at CIRM (Marseille—Luminy, fall 2007), “Program on Extremal K?hler Metrics and K?hler–Ricci Flow” at the De Giorgi Center (Pisa, spring 2008), and “Analytic Aspects of Algebraic and Complex Geometry” at CIRM (Marseille— Luminy, spring 2011).作者: 鴕鳥(niǎo) 時(shí)間: 2025-3-22 15:34
,The K?hler–Ricci Flow on Fano Manifolds,ference talks, including “Einstein Manifolds and Beyond” at CIRM (Marseille—Luminy, fall 2007), “Program on Extremal K?hler Metrics and K?hler–Ricci Flow” at the De Giorgi Center (Pisa, spring 2008), and “Analytic Aspects of Algebraic and Complex Geometry” at CIRM (Marseille— Luminy, spring 2011).作者: PALSY 時(shí)間: 2025-3-22 18:06 作者: ARIA 時(shí)間: 2025-3-22 23:26
,An Introduction to the K?hler–Ricci Flow,or the flow, convergence on manifolds with negative and zero first Chern class, and behavior of the flow in the case when the canonical bundle is big and nef. We also discuss the collapsing of the K?hler–Ricci flow on the product of a torus and a Riemann surface of genus greater than one. Finally, w作者: 蚊帳 時(shí)間: 2025-3-23 01:59
,Regularizing Properties of the K?hler–Ricci Flow,zing the work of Song and Tian on this topic. This result is applied to construct a K?hler–Ricci flow on varieties with log terminal singularities, in connection with the Minimal Model Program. The same circle of ideas is also used to prove a regularity result for elliptic complex Monge–Ampère equat作者: 斜谷 時(shí)間: 2025-3-23 08:10 作者: 艦旗 時(shí)間: 2025-3-23 09:41
,Convergence of the K?hler–Ricci Flow on a K?hler–Einstein Fano Manifold, automorphism group, the normalized K?hler–Ricci flow converges smoothly to the unique K?hler–Einstein metric. We also explain an alternative approach due to Berman–Boucksom–Eyssidieux–Guedj–Zeriahi, which only yields weak convergence but also applies to Fano varieties with log terminal singularitie作者: 他很靈活 時(shí)間: 2025-3-23 16:59
Einleitung und Problemstellung,efficients, some existence, uniqueness and regularity results for viscosity solutions of fully nonlinear parabolic equations (including degenerate ones), the Harnack inequality for fully nonlinear uniformly parabolic equations.作者: 使成波狀 時(shí)間: 2025-3-23 20:03 作者: 河潭 時(shí)間: 2025-3-23 22:41 作者: 愛(ài)得痛了 時(shí)間: 2025-3-24 06:13
,Technologien für Digitalisierungsl?sungen,F in its first 20 years (1984–2003), especially an essentially self-contained exposition of Perelman’s uniform estimates on the scalar curvature, the diameter, and the Ricci potential function for the normalized K?hler–Ricci flow (NKRF), including the monotonicity of Perelman’s .-entropy and .-nonco作者: GNAW 時(shí)間: 2025-3-24 09:04
Roadmap einer nachhaltigen Digitalisierung, automorphism group, the normalized K?hler–Ricci flow converges smoothly to the unique K?hler–Einstein metric. We also explain an alternative approach due to Berman–Boucksom–Eyssidieux–Guedj–Zeriahi, which only yields weak convergence but also applies to Fano varieties with log terminal singularitie作者: 描述 時(shí)間: 2025-3-24 14:04 作者: 動(dòng)物 時(shí)間: 2025-3-24 15:18 作者: commonsense 時(shí)間: 2025-3-24 19:52 作者: 有幫助 時(shí)間: 2025-3-25 00:35
Roadmap einer nachhaltigen Digitalisierung, automorphism group, the normalized K?hler–Ricci flow converges smoothly to the unique K?hler–Einstein metric. We also explain an alternative approach due to Berman–Boucksom–Eyssidieux–Guedj–Zeriahi, which only yields weak convergence but also applies to Fano varieties with log terminal singularities.作者: Original 時(shí)間: 2025-3-25 04:44 作者: countenance 時(shí)間: 2025-3-25 10:47
Introduction,This book is the first comprehensive reference on the K?hler–Ricci flow. It provides an introduction to fully non-linear parabolic equations, to the K?hler–Ricci flow in general and to Perelman’s estimates in the Fano case, and also presents the connections with the Minimal Model program.作者: coltish 時(shí)間: 2025-3-25 12:06
An Introduction to Fully Nonlinear Parabolic Equations,efficients, some existence, uniqueness and regularity results for viscosity solutions of fully nonlinear parabolic equations (including degenerate ones), the Harnack inequality for fully nonlinear uniformly parabolic equations.作者: altruism 時(shí)間: 2025-3-25 18:14 作者: innate 時(shí)間: 2025-3-25 22:33 作者: indignant 時(shí)間: 2025-3-26 01:39 作者: Introvert 時(shí)間: 2025-3-26 04:47 作者: LAPSE 時(shí)間: 2025-3-26 09:59
Sebastien Boucksom,Philippe Eyssidieux,Vincent GueAn educational and up-to-date reference work on non-linear parabolic partial differential equations.The only book currently available on the K?hler-Ricci flow.The first book to present a complete proo作者: 記成螞蟻 時(shí)間: 2025-3-26 13:02 作者: AGATE 時(shí)間: 2025-3-26 19:23
0075-8434 on K?hler-Einstein manifolds of positive scalar curvature (Fano manifolds). Shortly after, G. Tian and J. Song discovered a complex analogue of Perelman’s ideas: the K?hler-Ricci flow is a metric embodiment of978-3-319-00818-9978-3-319-00819-6Series ISSN 0075-8434 Series E-ISSN 1617-9692 作者: Crater 時(shí)間: 2025-3-26 21:34
Book 2013 spin-off of his breakthrough, G. Perelman proved the convergence of the K?hler-Ricci flow on K?hler-Einstein manifolds of positive scalar curvature (Fano manifolds). Shortly after, G. Tian and J. Song discovered a complex analogue of Perelman’s ideas: the K?hler-Ricci flow is a metric embodiment of作者: 浮雕寶石 時(shí)間: 2025-3-27 01:51
9樓作者: AWE 時(shí)間: 2025-3-27 09:15
9樓作者: 向前變橢圓 時(shí)間: 2025-3-27 09:40
9樓作者: STALL 時(shí)間: 2025-3-27 15:45
10樓作者: Modicum 時(shí)間: 2025-3-27 20:07
10樓作者: 啪心兒跳動(dòng) 時(shí)間: 2025-3-28 00:15
10樓作者: fibula 時(shí)間: 2025-3-28 06:07
10樓