派博傳思國際中心

標題: Titlebook: An Introduction to the Kolmogorov–Bernoulli Equivalence; Gabriel Ponce,Régis Var?o Book 2019 The Author(s), under exclusive licence to Spr [打印本頁]

作者: estrange    時間: 2025-3-21 19:59
書目名稱An Introduction to the Kolmogorov–Bernoulli Equivalence影響因子(影響力)




書目名稱An Introduction to the Kolmogorov–Bernoulli Equivalence影響因子(影響力)學科排名




書目名稱An Introduction to the Kolmogorov–Bernoulli Equivalence網(wǎng)絡公開度




書目名稱An Introduction to the Kolmogorov–Bernoulli Equivalence網(wǎng)絡公開度學科排名




書目名稱An Introduction to the Kolmogorov–Bernoulli Equivalence被引頻次




書目名稱An Introduction to the Kolmogorov–Bernoulli Equivalence被引頻次學科排名




書目名稱An Introduction to the Kolmogorov–Bernoulli Equivalence年度引用




書目名稱An Introduction to the Kolmogorov–Bernoulli Equivalence年度引用學科排名




書目名稱An Introduction to the Kolmogorov–Bernoulli Equivalence讀者反饋




書目名稱An Introduction to the Kolmogorov–Bernoulli Equivalence讀者反饋學科排名





作者: Delectable    時間: 2025-3-21 22:30

作者: BALE    時間: 2025-3-22 03:46

作者: 種類    時間: 2025-3-22 05:07

作者: collateral    時間: 2025-3-22 10:10
SpringerBriefs in Mathematicshttp://image.papertrans.cn/a/image/155557.jpg
作者: PATHY    時間: 2025-3-22 16:13
https://doi.org/10.1007/978-3-030-27390-3Kolmogorov systems; Bernoulli systems; ergodic theory; isomorphism problem; disintegration of measures; 3
作者: abject    時間: 2025-3-22 17:11

作者: AWRY    時間: 2025-3-22 22:17
Die digitale Evolution moderner Gro?st?dtec hierarchy of measure preserving transformations and quickly discuss the problem of detecting conditions under which the Kolmogorov property is promoted to the Bernoulli property. In particular the method introduced by Ornstein and Weiss is of particular interest for our context (smooth dynamics).
作者: Fillet,Filet    時間: 2025-3-23 02:31
Michael Jaekel,Karsten Bronnerthich will be crucial to the development of the results in the subsequent chapters. This chapter has no intention of being an introductory approach to ergodic theory or entropy theory, but to provide an account of results which will be necessary for the subsequent chapters, therefore proofs of the ci
作者: Handedness    時間: 2025-3-23 08:14
https://doi.org/10.1007/978-3-531-90649-2s originally given by Ornstein and Weiss in 1973 in the article entitled “Geodesic flows are Bernoullian” (Ornstein and Weiss, Isr J Math 14:184–198, 1973). The method introduced by Ornstein–Weiss uses the geometric structures associated to the ergodic automorphisms of . to obtain a sequence of refi
作者: 健談的人    時間: 2025-3-23 11:11
https://doi.org/10.1007/978-3-531-90649-2is chapter is to show that Kolmogorov and Bernoulli property can be obtained for a much more general class of dynamical systems, namely those admitting a global uniform hyperbolic behavior, i.e., the Anosov systems (Definition 4.1). Anosov systems play a crucial role in smooth ergodic theory being t
作者: 疏忽    時間: 2025-3-23 15:31

作者: Arboreal    時間: 2025-3-23 20:42
Introduction,c hierarchy of measure preserving transformations and quickly discuss the problem of detecting conditions under which the Kolmogorov property is promoted to the Bernoulli property. In particular the method introduced by Ornstein and Weiss is of particular interest for our context (smooth dynamics).
作者: 飛鏢    時間: 2025-3-23 23:34

作者: Mindfulness    時間: 2025-3-24 04:16

作者: Ordnance    時間: 2025-3-24 07:49

作者: Condense    時間: 2025-3-24 11:49
State of the Art,ve a smooth measure and admit some level of hyperbolicity. We define the class of non-uniformly hyperbolic diffeomorphisms (resp. flows), the class of smooth maps (resp. flows) with singularities, and the class of partially hyperbolic diffeomorphisms derived from Anosov, and present the state of art
作者: Colonnade    時間: 2025-3-24 15:53

作者: anatomical    時間: 2025-3-24 21:26

作者: neoplasm    時間: 2025-3-24 23:09
2191-8198 ith this type of presentation, nonspecialists and young researchers in dynamical systems may be encouraged to pursue problems in this area..978-3-030-27389-7978-3-030-27390-3Series ISSN 2191-8198 Series E-ISSN 2191-8201
作者: Neonatal    時間: 2025-3-25 05:51
An Introduction to the Kolmogorov–Bernoulli Equivalence
作者: 使絕緣    時間: 2025-3-25 09:21
Michael Jaekel,Karsten Bronnertexistence of invariant measures for a continuous map. In Sect. 2.2 we state the Birkhoff ergodic theorem and recall the definitions of ergodicity and mixing, two of the properties commonly cited in the ergodic hierarchy. In Sect. 2.3 we fix several notations for the operations among partitions, such
作者: 不幸的人    時間: 2025-3-25 13:09

作者: dithiolethione    時間: 2025-3-25 17:43
Book 2019lem, and presents recent results in this field. Starting with a crash course on ergodic theory, it uses the class of ergodic automorphisms of the two tori as a toy model to explain the main ideas and technicalities arising in the aforementioned problem. The level of generality then increases step by
作者: EVEN    時間: 2025-3-25 20:24

作者: PHON    時間: 2025-3-26 02:10

作者: 媒介    時間: 2025-3-26 04:20
,Hyperbolic Structures and the Kolmogorov–Bernoulli Equivalence,hism (Theorem 4.1). Linear ergodic automorphisms of . are very particular examples of Anosov diffeomorphisms. In light of this fact we will show how to obtain the Kolmogorov property for .. Anosov diffeomorphisms (Theorem 4.8) and how we can use it to obtain the Bernoulli property (Theorem 4.9) in parallel to the argument used in Chap. ..
作者: fledged    時間: 2025-3-26 12:24

作者: Astigmatism    時間: 2025-3-26 16:12

作者: incredulity    時間: 2025-3-26 19:02
State of the Art,ies that appear along the arguments. The class derived from Anosov diffeomorphisms is the one for which the results differ the most from the results for Anosov diffeomorphisms, therefore we go deeper in this particular case and prove the key results which allow us to overcome the absence of complete hyperbolicity along the center direction.
作者: 賞心悅目    時間: 2025-3-27 01:02
9樓
作者: PHIL    時間: 2025-3-27 01:29
9樓
作者: Hippocampus    時間: 2025-3-27 07:06
9樓
作者: DALLY    時間: 2025-3-27 12:40
10樓
作者: encomiast    時間: 2025-3-27 14:52
10樓
作者: constellation    時間: 2025-3-27 21:41
10樓
作者: llibretto    時間: 2025-3-27 22:58
10樓




歡迎光臨 派博傳思國際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
会同县| 绿春县| 乌兰浩特市| 永川市| 天津市| 渝中区| 玛纳斯县| 静安区| 谷城县| 郸城县| 荣成市| 宜黄县| 新巴尔虎左旗| 连城县| 永吉县| 保亭| 龙川县| 游戏| 揭西县| 永平县| 洛阳市| 疏勒县| 漳浦县| 眉山市| 德惠市| 监利县| 吉安市| 郴州市| 山丹县| 介休市| 泰兴市| 宁德市| 信宜市| 兴文县| 营山县| 县级市| 上高县| 铁力市| 庆安县| 曲阳县| 阜新|