標(biāo)題: Titlebook: An Introduction to Ultrametric Summability Theory; P.N. Natarajan Book 2015Latest edition The Editor(s) (if applicable) and The Author(s), [打印本頁(yè)] 作者: Opulent 時(shí)間: 2025-3-21 16:32
書目名稱An Introduction to Ultrametric Summability Theory影響因子(影響力)
書目名稱An Introduction to Ultrametric Summability Theory影響因子(影響力)學(xué)科排名
書目名稱An Introduction to Ultrametric Summability Theory網(wǎng)絡(luò)公開度
書目名稱An Introduction to Ultrametric Summability Theory網(wǎng)絡(luò)公開度學(xué)科排名
書目名稱An Introduction to Ultrametric Summability Theory被引頻次
書目名稱An Introduction to Ultrametric Summability Theory被引頻次學(xué)科排名
書目名稱An Introduction to Ultrametric Summability Theory年度引用
書目名稱An Introduction to Ultrametric Summability Theory年度引用學(xué)科排名
書目名稱An Introduction to Ultrametric Summability Theory讀者反饋
書目名稱An Introduction to Ultrametric Summability Theory讀者反饋學(xué)科排名
作者: Cocker 時(shí)間: 2025-3-21 22:38
Ultrametric Functional Analysis,ic set up?too. However, the Hahn–Banach theorem fails to hold. To salvage the Hahn–Banach theorem, the concept of a “spherically complete field” is introduced and Ingleton’s version of the Hahn–Banach theorem is proved. The classical “convexity” does not work in the ultrametric set up and it is repl作者: detach 時(shí)間: 2025-3-22 03:43 作者: 笨重 時(shí)間: 2025-3-22 05:06 作者: 懶鬼才會(huì)衰弱 時(shí)間: 2025-3-22 10:56
Ultrametric Summability Theory,n the topic) to the present. In the present chapter, Silverman–Toeplitz theorem is proved using the “sliding-hump method”. Schur’s theorem and Steinhaus theorem also find a mention. Core of a sequence and Knopp’s core theorem is discussed. It is proved that certain Steinhaus-type theorems fail to hold.作者: Fsh238 時(shí)間: 2025-3-22 12:53 作者: 皮薩 時(shí)間: 2025-3-22 20:41 作者: Diverticulitis 時(shí)間: 2025-3-22 22:43 作者: 他一致 時(shí)間: 2025-3-23 02:53
https://doi.org/10.1007/978-81-322-2559-1Archimedean axiom; Canonical expansion; Double sequences; Hahn-Banach theorem; Schur‘s theorem; The N?rlu作者: dilute 時(shí)間: 2025-3-23 09:07 作者: effrontery 時(shí)間: 2025-3-23 11:17
,Die Zul?ssigkeit der ?rzte-GmbH, . being prime and prove that any valuation of . (the field of rational numbers) is either the trivial valuation, a .-adic valuation or a power of the usual absolute value, where the power is positive and less than or equal to 1. We discuss equivalent valuations too.作者: 入會(huì) 時(shí)間: 2025-3-23 14:01
https://doi.org/10.1007/b138607ic set up?too. However, the Hahn–Banach theorem fails to hold. To salvage the Hahn–Banach theorem, the concept of a “spherically complete field” is introduced and Ingleton’s version of the Hahn–Banach theorem is proved. The classical “convexity” does not work in the ultrametric set up and it is repl作者: 要控制 時(shí)間: 2025-3-23 21:19
,Die Zul?ssigkeit der ?rzte-GmbH,n the topic) to the present. In the present chapter, Silverman–Toeplitz theorem is proved using the “sliding-hump method”. Schur’s theorem and Steinhaus theorem also find a mention. Core of a sequence and Knopp’s core theorem is discussed. It is proved that certain Steinhaus-type theorems fail to ho作者: 熱烈的歡迎 時(shí)間: 2025-3-24 01:20
https://doi.org/10.1007/b138607In this chapter, we discuss some arithmetic and analysis in the .-adic field. We also introduce the concepts of differentiability and derivatives in ultrametric analysis and briefly indicate how ultrametric calculus is different from our usual calculus.作者: CAPE 時(shí)間: 2025-3-24 03:56
,Die Zul?ssigkeit der ?rzte-GmbH,In this chapter, we introduce the N?rlund and the Weighted Mean methods in the ultrametric set-up and their properties are elaborately discussed. We also show that the Mazur–Orlicz theorem and Brudno’s theorem fail to hold in the ultrametric case.作者: 業(yè)余愛好者 時(shí)間: 2025-3-24 10:08 作者: Inoperable 時(shí)間: 2025-3-24 12:15 作者: 詳細(xì)目錄 時(shí)間: 2025-3-24 15:19 作者: 膽小懦夫 時(shí)間: 2025-3-24 22:44
https://doi.org/10.1007/978-3-642-68700-6In the current chapter, we introduce the N?rlund method and the Weighted Mean method for double sequences and establish many of their properties.作者: 名義上 時(shí)間: 2025-3-25 02:11
Some Arithmetic and Analysis in ,; Derivatives in Ultrametric Analysis,In this chapter, we discuss some arithmetic and analysis in the .-adic field. We also introduce the concepts of differentiability and derivatives in ultrametric analysis and briefly indicate how ultrametric calculus is different from our usual calculus.作者: 公司 時(shí)間: 2025-3-25 03:47 作者: BALE 時(shí)間: 2025-3-25 10:52
The Euler and The Taylor Methods,In this chapter, we introduce the Euler and the Taylor methods and present a detailed study of their properties.作者: 環(huán)形 時(shí)間: 2025-3-25 14:02
Tauberian Theorems,In this chapter, we prove Tauberian theorems for the N?rlund, the Weighted Mean and the Euler methods.作者: 生命層 時(shí)間: 2025-3-25 17:27
Silverman-Toeplitz Theorem for Double Sequences and Double Series,In the present chapter, we introduce double sequences and double series in ultrametric analysis. We prove Silverman-Toeplitz theorem for 4-dimensional infinite matrices. We also prove Schur’s and Steinhaus theorems for 4-dimensional matrices.作者: Preamble 時(shí)間: 2025-3-25 21:35
,The N?rlund Method and The Weighted Mean Method for Double Sequences,In the current chapter, we introduce the N?rlund method and the Weighted Mean method for double sequences and establish many of their properties.作者: Visual-Acuity 時(shí)間: 2025-3-26 00:18 作者: formula 時(shí)間: 2025-3-26 04:32
Forum for Interdisciplinary Mathematicshttp://image.papertrans.cn/a/image/155522.jpg作者: abnegate 時(shí)間: 2025-3-26 10:13 作者: HARP 時(shí)間: 2025-3-26 16:23 作者: 創(chuàng)新 時(shí)間: 2025-3-26 20:52
https://doi.org/10.1007/b138607troduced and Ingleton’s version of the Hahn–Banach theorem is proved. The classical “convexity” does not work in the ultrametric set up and it is replaced by the notion of “.-convexity”, which is briefly discussed at the end of the chapter.作者: 軌道 時(shí)間: 2025-3-26 22:20
Ultrametric Functional Analysis,troduced and Ingleton’s version of the Hahn–Banach theorem is proved. The classical “convexity” does not work in the ultrametric set up and it is replaced by the notion of “.-convexity”, which is briefly discussed at the end of the chapter.作者: 道學(xué)氣 時(shí)間: 2025-3-27 04:43 作者: 并排上下 時(shí)間: 2025-3-27 07:52
Book 2015Latest editionpeal to both young researchers and more experienced mathematicians who are looking to explore new areas in analysis. The book is also useful as a text for those who wish to specialize in ultrametric summability theory.作者: obeisance 時(shí)間: 2025-3-27 12:08 作者: cringe 時(shí)間: 2025-3-27 13:35 作者: 動(dòng)物 時(shí)間: 2025-3-27 18:12 作者: 傾聽 時(shí)間: 2025-3-28 01:33 作者: 墊子 時(shí)間: 2025-3-28 04:46
Cultural Content, rituals, and creative expression all of which constitute essential signposts for understanding who we are and what we do. If advances in health, commerce, education, and economic growth are to be implemented and sustained, understanding culture is critical.”作者: irreducible 時(shí)間: 2025-3-28 10:19 作者: Graphite 時(shí)間: 2025-3-28 14:23 作者: thwart 時(shí)間: 2025-3-28 17:47
,Grunds?tzliches über Konstruktion und Verwendung der Automaten,n müssen. Lange Wege der Arbeitsschlitten gestatten auch die Bearbeitung sperriger Werkstücke mit lang vorstehenden Werkzeugen. Eine meist über den ganzen Drehzahlbereich schaltbare Spindeldrehzahlreihe gestattet beliebig die jeweils wirtschaftlichste Schnittgeschwindigkeit einzustellen. Ebenso ist 作者: Preamble 時(shí)間: 2025-3-28 19:34
er Mode (ATM) could fail to recognize the invaluable contribution to this technology and to world standardization as a whole made by the International Telecommunications Union and the ATM Forum, and you will find references to their work throughout the text. Particular copyright extracts are labelled accordin978-3-519-06448-0978-3-322-89939-2作者: 膽大 時(shí)間: 2025-3-29 00:12 作者: 期滿 時(shí)間: 2025-3-29 05:37
e book will earn a special place on yourbookshelf as a reference work you always want to have within reach...Common Lisp Recipes. is aimed atprogrammers who are already familiar with Common Lisp to a certain ex978-1-4842-1177-9978-1-4842-1176-2