標(biāo)題: Titlebook: An Introduction to Riemannian Geometry; With Applications to Leonor Godinho,José Natário Textbook 2014 Springer International Publishing Sw [打印本頁] 作者: ARSON 時(shí)間: 2025-3-21 20:03
書目名稱An Introduction to Riemannian Geometry影響因子(影響力)
書目名稱An Introduction to Riemannian Geometry影響因子(影響力)學(xué)科排名
書目名稱An Introduction to Riemannian Geometry網(wǎng)絡(luò)公開度
書目名稱An Introduction to Riemannian Geometry網(wǎng)絡(luò)公開度學(xué)科排名
書目名稱An Introduction to Riemannian Geometry被引頻次
書目名稱An Introduction to Riemannian Geometry被引頻次學(xué)科排名
書目名稱An Introduction to Riemannian Geometry年度引用
書目名稱An Introduction to Riemannian Geometry年度引用學(xué)科排名
書目名稱An Introduction to Riemannian Geometry讀者反饋
書目名稱An Introduction to Riemannian Geometry讀者反饋學(xué)科排名
作者: 褪色 時(shí)間: 2025-3-21 23:13 作者: SHRIK 時(shí)間: 2025-3-22 02:59 作者: 難聽的聲音 時(shí)間: 2025-3-22 04:40 作者: 假設(shè) 時(shí)間: 2025-3-22 11:10 作者: LATER 時(shí)間: 2025-3-22 15:48 作者: sphincter 時(shí)間: 2025-3-22 17:09 作者: 躲債 時(shí)間: 2025-3-22 21:24 作者: 斗爭(zhēng) 時(shí)間: 2025-3-23 02:30
Curvature,nt vector fields, the difference between the sum of the internal angles of a geodesic triangle and ., or the angle by which a vector is rotated when parallel-transported along a closed curve. This chapter addresses the various characterizations and properties of curvature.作者: 反叛者 時(shí)間: 2025-3-23 05:40
Geometric Mechanics,iggered by the need to explain a mismatch between the observed orbit of planet Uranus and its theoretical prediction. This chapter uses Riemannian geometry to give a geometric formulation of Newtonian mechanics.作者: PATRI 時(shí)間: 2025-3-23 11:34
Unternehmensführung & Controllinging concepts such as derivatives or integrals whose definitions in . rely on the preferred Cartesian coordinates. The precise definition of these spaces, called ., and the associated notions of differentiation, are the subject of this chapter.作者: 枕墊 時(shí)間: 2025-3-23 17:07 作者: 得罪人 時(shí)間: 2025-3-23 20:57 作者: 運(yùn)動(dòng)的我 時(shí)間: 2025-3-24 00:27 作者: 柱廊 時(shí)間: 2025-3-24 02:30
Unternehmensführung & Controlling, there are no such preferred coordinates; to define distances and angles one must add more structure by choosing a special .-tensor field, called a . (much in the same way as a volume form must be selected to determine a notion of volume). This idea was introduced by Riemann in his 1854 habilitatio作者: 和平 時(shí)間: 2025-3-24 10:15 作者: 粗魯性質(zhì) 時(shí)間: 2025-3-24 13:16
Operationalisierung der Faktoren,n was laid down by Newton in the ., first published in 1687, which contained, among many other things, an explanation for the elliptical orbits of the planets around the Sun. Newton’s ideas were developed and extended by a number of mathematicians, including Euler, Lagrange, Laplace, Jacobi, Poisson作者: CROAK 時(shí)間: 2025-3-24 18:00
Unternehmensführung & Controllingsical mechanics of Galileo and Newton, arose from the seemingly paradoxical experimental fact that the speed of light is the same for every observer, independently of their state of motion. In 1905, after a period of great confusion, Einstein came up with an explanation that was as simple as it was 作者: Modicum 時(shí)間: 2025-3-24 22:46
An Introduction to Riemannian Geometry978-3-319-08666-8Series ISSN 0172-5939 Series E-ISSN 2191-6675 作者: Cabinet 時(shí)間: 2025-3-25 03:01 作者: 保守 時(shí)間: 2025-3-25 06:01 作者: 商品 時(shí)間: 2025-3-25 10:28 作者: LIEN 時(shí)間: 2025-3-25 13:40
Leonor Godinho,José NatárioPresents a self-contained treatment of Riemannian geometry and applications to mechanics and relativity in one book.Conveys nontrivial results in general relativity (such as the Hawking and Penrose si作者: GLIDE 時(shí)間: 2025-3-25 16:23
Universitexthttp://image.papertrans.cn/a/image/155464.jpg作者: fender 時(shí)間: 2025-3-25 23:08
Unternehmensführung & ControllingIn this chapter we present the solutions to 140 selected exercises, chosen among the 333 exercises in the previous chapters.作者: 清唱?jiǎng)?nbsp; 時(shí)間: 2025-3-26 01:16 作者: 填滿 時(shí)間: 2025-3-26 08:11
0172-5939 developed by numerous examples and over 300 exercises. Detailed solutions are provided for many of these exercises, making .An Introduction to Riemannian Geometry. ideal for self-study..978-3-319-08665-1978-3-319-08666-8Series ISSN 0172-5939 Series E-ISSN 2191-6675 作者: commodity 時(shí)間: 2025-3-26 10:24 作者: Density 時(shí)間: 2025-3-26 15:18 作者: JIBE 時(shí)間: 2025-3-26 17:10 作者: 內(nèi)向者 時(shí)間: 2025-3-26 22:57
Differential Forms,of volume, and so only objects with appropriate transformation properties under coordinate changes can be integrated. These objects, called ., were introduced by élie Cartan in 1899; they come equipped with natural algebraic and differential operations, making them a fundamental tool of differential作者: 采納 時(shí)間: 2025-3-27 02:18 作者: DUCE 時(shí)間: 2025-3-27 09:18 作者: SMART 時(shí)間: 2025-3-27 09:42 作者: 道學(xué)氣 時(shí)間: 2025-3-27 14:51 作者: 不真 時(shí)間: 2025-3-27 20:27
10樓作者: modish 時(shí)間: 2025-3-28 00:30
10樓作者: Maximizer 時(shí)間: 2025-3-28 03:10
10樓作者: candle 時(shí)間: 2025-3-28 07:23
10樓