標(biāo)題: Titlebook: An Introduction to Quasisymmetric Schur Functions; Hopf Algebras, Quasi Kurt Luoto,Stefan Mykytiuk,Stephanie van Willigenb Book 2013 Kurt L [打印本頁] 作者: GOLF 時(shí)間: 2025-3-21 20:09
書目名稱An Introduction to Quasisymmetric Schur Functions影響因子(影響力)
書目名稱An Introduction to Quasisymmetric Schur Functions影響因子(影響力)學(xué)科排名
書目名稱An Introduction to Quasisymmetric Schur Functions網(wǎng)絡(luò)公開度
書目名稱An Introduction to Quasisymmetric Schur Functions網(wǎng)絡(luò)公開度學(xué)科排名
書目名稱An Introduction to Quasisymmetric Schur Functions被引頻次
書目名稱An Introduction to Quasisymmetric Schur Functions被引頻次學(xué)科排名
書目名稱An Introduction to Quasisymmetric Schur Functions年度引用
書目名稱An Introduction to Quasisymmetric Schur Functions年度引用學(xué)科排名
書目名稱An Introduction to Quasisymmetric Schur Functions讀者反饋
書目名稱An Introduction to Quasisymmetric Schur Functions讀者反饋學(xué)科排名
作者: 出處 時(shí)間: 2025-3-21 23:39
Hopf algebras,s, Sym, the Hopf algebra of quasisymmetric functions, QSym, and the Hopf algebra of noncommutative symmetric functions, NSym. In each case we describe pertinent bases, the product, the coproduct and the antipode. Once defined we see how Sym is a subalgebra of QSym, and a quotient of NSym. We also di作者: 調(diào)整校對 時(shí)間: 2025-3-22 02:45 作者: adjacent 時(shí)間: 2025-3-22 05:24 作者: FLINT 時(shí)間: 2025-3-22 09:14 作者: Arroyo 時(shí)間: 2025-3-22 15:32 作者: 恫嚇 時(shí)間: 2025-3-22 20:13
Hopf algebras,scuss the duality of QSym and NSym and a variety of automorphisms on each. We end by defining combinatorial Hopf algebras and discussing the role QSym plays as the terminal object in the category of all combinatorial Hopf algebras.作者: Provenance 時(shí)間: 2025-3-22 21:42 作者: 充足 時(shí)間: 2025-3-23 03:26 作者: Meager 時(shí)間: 2025-3-23 08:16 作者: 過剩 時(shí)間: 2025-3-23 13:03 作者: 慎重 時(shí)間: 2025-3-23 14:45 作者: chronology 時(shí)間: 2025-3-23 20:37
Book 2013isymmetric and noncommutative symmetric functions and connections between them. The second goal is to give a survey of results with respect to an exciting new basis of the Hopf algebra of quasisymmetric functions, whose combinatorics is analogous to that of the renowned Schur functions..作者: AWE 時(shí)間: 2025-3-24 01:37 作者: 確認(rèn) 時(shí)間: 2025-3-24 03:53
Softwaretechnische Realisierung,algebra. A discussion on how quasisymmetric functions simplify other algebraic functions is undertaken, and their appearance in areas such as probability, topology, and graph theory is also covered. Research on the dual algebra of noncommutative symmetric functions is touched on, as is a variety of 作者: GOAD 時(shí)間: 2025-3-24 09:22 作者: lesion 時(shí)間: 2025-3-24 12:26 作者: 刪減 時(shí)間: 2025-3-24 15:50 作者: prosthesis 時(shí)間: 2025-3-24 21:19
Kurt Luoto,Stefan Mykytiuk,Stephanie van WilligenbComprehensive introduction to quasisymmetric functions for non-specialists.First summary of results in the blossoming field of quasisymmetric.Schur functions using Young composition tableaux, which ge作者: RAG 時(shí)間: 2025-3-25 02:01 作者: 詞根詞綴法 時(shí)間: 2025-3-25 06:25 作者: 發(fā)怨言 時(shí)間: 2025-3-25 07:44 作者: 鴿子 時(shí)間: 2025-3-25 14:16
https://doi.org/10.1007/978-1-4614-7300-8Algebraic combinatorics; Young tableaux; combinatorial Hopf algebras; composition tableaux; noncommutati作者: MORT 時(shí)間: 2025-3-25 19:02 作者: 冷漠 時(shí)間: 2025-3-25 22:44
An Introduction to Quasisymmetric Schur Functions978-1-4614-7300-8Series ISSN 2191-8198 Series E-ISSN 2191-8201 作者: 綠州 時(shí)間: 2025-3-26 00:19
Quasisymmetric Schur functions,nto the basis of Schur functions under the forgetful map. Each of these new bases exhibit Pieri and Littlewood-Richardson rules, which we describe. As with their quasisymmetric counterparts, one basis involves reverse composition tableaux, while the other involves Young composition tableaux.作者: Schlemms-Canal 時(shí)間: 2025-3-26 06:56 作者: foodstuff 時(shí)間: 2025-3-26 10:17
8樓作者: 債務(wù) 時(shí)間: 2025-3-26 16:01
8樓作者: 生氣地 時(shí)間: 2025-3-26 17:20
8樓作者: infarct 時(shí)間: 2025-3-26 21:05
9樓作者: HEDGE 時(shí)間: 2025-3-27 02:35
9樓作者: ATOPY 時(shí)間: 2025-3-27 09:22
9樓作者: 上漲 時(shí)間: 2025-3-27 12:06
10樓作者: forecast 時(shí)間: 2025-3-27 16:27
10樓作者: 切碎 時(shí)間: 2025-3-27 21:16
10樓作者: 步履蹣跚 時(shí)間: 2025-3-28 00:43
10樓