標(biāo)題: Titlebook: An Introduction to Infinite-Dimensional Linear Systems Theory; Ruth F. Curtain,Hans Zwart Textbook 1995 Springer Science+Business Media Ne [打印本頁] 作者: 厭倦了我 時間: 2025-3-21 18:31
書目名稱An Introduction to Infinite-Dimensional Linear Systems Theory影響因子(影響力)
書目名稱An Introduction to Infinite-Dimensional Linear Systems Theory影響因子(影響力)學(xué)科排名
書目名稱An Introduction to Infinite-Dimensional Linear Systems Theory網(wǎng)絡(luò)公開度
書目名稱An Introduction to Infinite-Dimensional Linear Systems Theory網(wǎng)絡(luò)公開度學(xué)科排名
書目名稱An Introduction to Infinite-Dimensional Linear Systems Theory被引頻次
書目名稱An Introduction to Infinite-Dimensional Linear Systems Theory被引頻次學(xué)科排名
書目名稱An Introduction to Infinite-Dimensional Linear Systems Theory年度引用
書目名稱An Introduction to Infinite-Dimensional Linear Systems Theory年度引用學(xué)科排名
書目名稱An Introduction to Infinite-Dimensional Linear Systems Theory讀者反饋
書目名稱An Introduction to Infinite-Dimensional Linear Systems Theory讀者反饋學(xué)科排名
作者: ARY 時間: 2025-3-21 23:03
978-1-4612-8702-5Springer Science+Business Media New York 1995作者: Metastasis 時間: 2025-3-22 00:55 作者: 藐視 時間: 2025-3-22 08:03
Die Tonleiter und ihre Mathematiks that arise for delay and distributed parameter (those described by partial differential equations) systems. These two special classes of infinite-dimensional systems occur most frequently in the applications.作者: Anticoagulants 時間: 2025-3-22 11:48 作者: 緯線 時間: 2025-3-22 14:01 作者: 宣傳 時間: 2025-3-22 20:33
Semigroup Theory, to describe them through an abstract formulation of the type. on a separable complex Hilbert space Z to enable us to present a unified treatment of these and finite-dimensional systems. Let us first consider a simple example.作者: Iniquitous 時間: 2025-3-22 23:42 作者: 小教堂 時間: 2025-3-23 03:32
Zusammenfassende Schlu?bemerkungenIn this chapter, we shall consider the following class of infinite-dimensional systems with input . and output .:作者: 小平面 時間: 2025-3-23 07:46 作者: 漸強 時間: 2025-3-23 12:25
The Cauchy Problem,In Theorem 2.1.10 we saw that if A is the infinitesimal generator of a .-semigroup .(.), the solution of the abstract homogeneous Cauchy initial value problem.is given by作者: 凹槽 時間: 2025-3-23 15:44 作者: 流動性 時間: 2025-3-23 20:04 作者: 某人 時間: 2025-3-23 22:39 作者: prostatitis 時間: 2025-3-24 05:28
Die Tonleiter und ihre Mathematiks that arise for delay and distributed parameter (those described by partial differential equations) systems. These two special classes of infinite-dimensional systems occur most frequently in the applications.作者: 商店街 時間: 2025-3-24 09:01 作者: Respond 時間: 2025-3-24 12:30
Normale und pathologische Biologiesimal generator of a .-semigroup .(.) on ., . ∈ .(., .), and . ∈ .(.). In contrast with the previous chapters, we shall consider the time interval (., .] instead of the interval [0, .]. We recall that the state and the output trajectories of the state linear system are given by.where . ∈ . is the in作者: 存心 時間: 2025-3-24 17:58 作者: cogent 時間: 2025-3-24 21:39
Zusammenfassende Schlu?bemerkungenctable state linear systems with finite-rank inputs and outputs and many systems with unbounded input and output operators. In this chapter, we shall develop a theory for robust controllers for transfer matrices in ., using the mathematical structure outlined in the last two chapters. First, we defi作者: d-limonene 時間: 2025-3-25 00:42 作者: Fecundity 時間: 2025-3-25 04:24
Linear Quadratic Optimal Control,itial condition. We associate the following . with the trajectories (6.1).where .(.) is given by (6.1) and .. Furthermore, . ∈ .(.) is self-adjoint and nonnegative, . ∈ .(.) is coercive, that is, . is self-adjoint, and . ≥ ε I for some ε > 0 (see A.3.71).作者: DAMP 時間: 2025-3-25 09:51
Textbook 1995ration by the authors is that their book should be accessible to graduate engineers and mathematicians with a minimal background in functional analysis. Consequently, all the mathematical background is summarized in an extensive appendix. For the majority of students, this would be their only acquaintance with infinite dimensional systems.作者: right-atrium 時間: 2025-3-25 12:39
Normale und pathologische Biologieitial condition. We associate the following . with the trajectories (6.1).where .(.) is given by (6.1) and .. Furthermore, . ∈ .(.) is self-adjoint and nonnegative, . ∈ .(.) is coercive, that is, . is self-adjoint, and . ≥ ε I for some ε > 0 (see A.3.71).作者: Mechanics 時間: 2025-3-25 18:25 作者: 遭受 時間: 2025-3-25 22:11
0939-2475 synthesis of time- and frequency-domain methods, there is a need for an introductory text which treats both state-space and frequency-domain aspects in an integrated fashion. The authors‘ primary aim is to write an introductory textbook for a course on infinite dimensional linear systems. An importa作者: 離開真充足 時間: 2025-3-26 01:51
https://doi.org/10.1007/978-3-7091-9941-1cally, we suppose that we have a scalar input function of time .: . ? and a scalar output function of time y: . ?, which arc Laplace transformable and we suppose that their Laplace transforms .(.) and ?(.) are related by.where g(.) is an irrational function of the complex variable .. We call the .(.) the ..作者: 多嘴多舌 時間: 2025-3-26 07:12
Zusammenfassende Schlu?bemerkungendevelop a theory for robust controllers for transfer matrices in ., using the mathematical structure outlined in the last two chapters. First, we define the appropriate stability concepts for transfer matrices.作者: GLADE 時間: 2025-3-26 09:34 作者: Embolic-Stroke 時間: 2025-3-26 16:10 作者: 商談 時間: 2025-3-26 18:18 作者: 集中營 時間: 2025-3-26 22:37 作者: 規(guī)范就好 時間: 2025-3-27 01:37 作者: parasite 時間: 2025-3-27 07:03
Frequency-Domain Descriptions, this section, we study the input-output relationship directly in the frequency domain without reference to any state-space descriptions. More specifically, we suppose that we have a scalar input function of time .: . ? and a scalar output function of time y: . ?, which arc Laplace transformable and作者: 充足 時間: 2025-3-27 11:52 作者: 大炮 時間: 2025-3-27 16:53
An Introduction to Infinite-Dimensional Linear Systems Theory作者: 易發(fā)怒 時間: 2025-3-27 20:48
10樓作者: Virtues 時間: 2025-3-28 00:59
10樓作者: Dappled 時間: 2025-3-28 06:07
10樓作者: 綠州 時間: 2025-3-28 08:53
10樓