標(biāo)題: Titlebook: An Introduction to Convex Polytopes; Arne Br?ndsted Textbook 1983 Springer Science+Business Media New York 1983 Equivalence.Konvexes Polyt [打印本頁] 作者: 嬉戲 時(shí)間: 2025-3-21 17:40
書目名稱An Introduction to Convex Polytopes影響因子(影響力)
書目名稱An Introduction to Convex Polytopes影響因子(影響力)學(xué)科排名
書目名稱An Introduction to Convex Polytopes網(wǎng)絡(luò)公開度
書目名稱An Introduction to Convex Polytopes網(wǎng)絡(luò)公開度學(xué)科排名
書目名稱An Introduction to Convex Polytopes被引頻次
書目名稱An Introduction to Convex Polytopes被引頻次學(xué)科排名
書目名稱An Introduction to Convex Polytopes年度引用
書目名稱An Introduction to Convex Polytopes年度引用學(xué)科排名
書目名稱An Introduction to Convex Polytopes讀者反饋
書目名稱An Introduction to Convex Polytopes讀者反饋學(xué)科排名
作者: 條約 時(shí)間: 2025-3-22 00:03 作者: 新娘 時(shí)間: 2025-3-22 03:56 作者: Myelin 時(shí)間: 2025-3-22 05:22 作者: 賠償 時(shí)間: 2025-3-22 09:14
Convex Sets,ndence, dimension, and linear mappings. We also assume familiarity with the standard inner product <·, ·> of ?., including the induced norm ∥ ∥, and elementary topological notions such as the interior int ., the closure cl ., and the boundary bd . of a subset . of ?..作者: Intuitive 時(shí)間: 2025-3-22 13:59 作者: FER 時(shí)間: 2025-3-22 17:26 作者: FORGO 時(shí)間: 2025-3-22 21:45
Humor in der Beratung der Sozialen ArbeitConvex polytopes are the .-dimensional analogues of 2-dimensional convexpolygons and 3-dimensional convex polyhedra. The theme of this book isthe combinatorial theory of convex polytopes. Generally speaking, the combinatorialtheory deals with the numbers of faces of various dimensions(vertices, edges, etc.).作者: Hemiparesis 時(shí)間: 2025-3-23 04:03 作者: 抱負(fù) 時(shí)間: 2025-3-23 05:33 作者: 揉雜 時(shí)間: 2025-3-23 12:57
Combinatorial Theory of Convex Polytopes,At the beginning of Section 10 it was indicated that the combinatorial theory of convex polytopes may be described as the study of their face-lattices. When it comes to reality, however, this description is too ambitious. Instead, we shall describe the combinatorial theory as the study of .-vectors.作者: 琺瑯 時(shí)間: 2025-3-23 16:55 作者: Estimable 時(shí)間: 2025-3-23 21:58 作者: BIDE 時(shí)間: 2025-3-23 23:15
Humor — Eine Ann?herung an ein Ph?nomenrk for studying convex sets is the notion of a Euclidean space, i.e. a finite-dimensional real affine space whose underlying linear space is equipped with an inner product. However, there is no essential loss of generality in working only with the more concrete spaces ?.; therefore, everything will 作者: 調(diào)整校對 時(shí)間: 2025-3-24 03:20 作者: Mucosa 時(shí)間: 2025-3-24 09:05 作者: Irascible 時(shí)間: 2025-3-24 14:41
5樓作者: obstinate 時(shí)間: 2025-3-24 18:07
6樓作者: nonchalance 時(shí)間: 2025-3-24 19:24
6樓作者: Needlework 時(shí)間: 2025-3-25 01:47
6樓作者: Insul島 時(shí)間: 2025-3-25 06:48
6樓作者: Ardent 時(shí)間: 2025-3-25 09:15
7樓作者: Assemble 時(shí)間: 2025-3-25 12:06
7樓作者: 有權(quán)威 時(shí)間: 2025-3-25 17:54
7樓作者: 沐浴 時(shí)間: 2025-3-25 21:34
7樓作者: Chivalrous 時(shí)間: 2025-3-26 01:38
8樓作者: 表臉 時(shí)間: 2025-3-26 04:55
8樓作者: SHRIK 時(shí)間: 2025-3-26 10:38
8樓作者: 編輯才信任 時(shí)間: 2025-3-26 15:54
8樓作者: 擁擠前 時(shí)間: 2025-3-26 20:34
9樓作者: Tonometry 時(shí)間: 2025-3-26 22:33
9樓作者: miracle 時(shí)間: 2025-3-27 04:23
9樓作者: GRAIN 時(shí)間: 2025-3-27 09:21
10樓作者: etiquette 時(shí)間: 2025-3-27 12:49
10樓作者: 疏遠(yuǎn)天際 時(shí)間: 2025-3-27 13:47
10樓作者: 上釉彩 時(shí)間: 2025-3-27 19:21
10樓