派博傳思國(guó)際中心

標(biāo)題: Titlebook: An Introduction to Algebraic Topology; Joseph J. Rotman Textbook 1988 Springer-Verlag New York Inc. 1988 Algebraic topology.CW complex.Fun [打印本頁(yè)]

作者: Entangle    時(shí)間: 2025-3-21 16:31
書目名稱An Introduction to Algebraic Topology影響因子(影響力)




書目名稱An Introduction to Algebraic Topology影響因子(影響力)學(xué)科排名




書目名稱An Introduction to Algebraic Topology網(wǎng)絡(luò)公開(kāi)度




書目名稱An Introduction to Algebraic Topology網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱An Introduction to Algebraic Topology被引頻次




書目名稱An Introduction to Algebraic Topology被引頻次學(xué)科排名




書目名稱An Introduction to Algebraic Topology年度引用




書目名稱An Introduction to Algebraic Topology年度引用學(xué)科排名




書目名稱An Introduction to Algebraic Topology讀者反饋




書目名稱An Introduction to Algebraic Topology讀者反饋學(xué)科排名





作者: squander    時(shí)間: 2025-3-21 21:03

作者: 方舟    時(shí)間: 2025-3-22 00:47
An Introduction to Algebraic Topology978-1-4612-4576-6Series ISSN 0072-5285 Series E-ISSN 2197-5612
作者: BINGE    時(shí)間: 2025-3-22 08:06
Jan Deth,Hans Rattinger,Edeltraud Rollerout topological spaces and continuous functions into problems about algebraic objects (e.g., groups, rings, vector spaces) and their homomorphisms; the method may succeed when the algebraic problem is easier than the original one. Before giving the appropriate setting, we illustrate how the method works.
作者: asthma    時(shí)間: 2025-3-22 10:17

作者: 不可救藥    時(shí)間: 2025-3-22 15:09
Ellen Banzhaf,Sigrun Kabisch,Dieter Rinkor it will allow us to compare different functors; in particular, it will make precise the question whether two functors are isomorphic. The notion of an adjoint pair of functors, though intimately involved with naturality, will not be discussed until Chapter 11, where it will be used.
作者: 涂掉    時(shí)間: 2025-3-22 19:37
https://doi.org/10.1007/978-3-662-66916-7s from S. into .. It is thus quite natural to consider (pointed) maps of . into a space .; their homotopy classes will be elements of the . .(., x.). This chapter gives the basic properties of the homotopy groups; in particular, it will be seen that they satisfy every Eilenberg-Steenrod axiom save excision.
作者: AWL    時(shí)間: 2025-3-22 23:23
Graduate Texts in Mathematicshttp://image.papertrans.cn/a/image/155124.jpg
作者: dysphagia    時(shí)間: 2025-3-23 04:27
https://doi.org/10.1007/978-1-4612-4576-6Algebraic topology; CW complex; Fundamental group; Homotopy; Homotopy group; Hurewicz theorem; Loop group;
作者: 能得到    時(shí)間: 2025-3-23 07:18
978-1-4612-8930-2Springer-Verlag New York Inc. 1988
作者: 轉(zhuǎn)向    時(shí)間: 2025-3-23 10:18

作者: Euphonious    時(shí)間: 2025-3-23 17:23
The Fundamental Group,path components. The functor to be constructed in this chapter takes values in ., the category of (not necessarily abelian) groups. The basic idea is that one can “multiply” two paths . and . if . ends where . begins.
作者: 螢火蟲(chóng)    時(shí)間: 2025-3-23 21:00

作者: Influx    時(shí)間: 2025-3-24 01:51
Homotopy Groups,s from S. into .. It is thus quite natural to consider (pointed) maps of . into a space .; their homotopy classes will be elements of the . .(., x.). This chapter gives the basic properties of the homotopy groups; in particular, it will be seen that they satisfy every Eilenberg-Steenrod axiom save excision.
作者: 救護(hù)車    時(shí)間: 2025-3-24 06:26

作者: 引水渠    時(shí)間: 2025-3-24 08:49

作者: 鋸齒狀    時(shí)間: 2025-3-24 14:33
Jan van Deth,Hans Rattinger,Edeltraud Rollerhether a union of .-simplexes in a space . that “ought” to be the boundary of some union of (. + 1)-simplexes in X actually is such a boundary. Consider the case . = 0; a 0-simplex in . is a point. Given two points x., x. ∈ ., they “ought” to be the endpoints of a 1-simplex; that is, there ought to
作者: Interdict    時(shí)間: 2025-3-24 16:11

作者: 吹牛需要藝術(shù)    時(shí)間: 2025-3-24 19:08
https://doi.org/10.1007/978-3-658-10138-1few cases in which we could compute these groups. At this point, however, we would have difficulty computing the homology groups of a space as simple as the torus . = . x .; indeed .(.) is uncountable for every . ≥ 0, so it is conceivable that .(.) is uncountable for every . (we shall soon see that
作者: 中國(guó)紀(jì)念碑    時(shí)間: 2025-3-25 01:29
Ellen Banzhaf,Sigrun Kabisch,Dieter Rinkor it will allow us to compare different functors; in particular, it will make precise the question whether two functors are isomorphic. The notion of an adjoint pair of functors, though intimately involved with naturality, will not be discussed until Chapter 11, where it will be used.
作者: 該得    時(shí)間: 2025-3-25 05:24

作者: Gesture    時(shí)間: 2025-3-25 10:12

作者: 挑剔小責(zé)    時(shí)間: 2025-3-25 13:14
Jan Deth,Hans Rattinger,Edeltraud RollerMany interesting spaces are constructed from certain familiar subsets of euclidean space, called simplexes. This brief chapter is devoted to describing these sets and maps between them.
作者: intolerance    時(shí)間: 2025-3-25 19:10

作者: 直覺(jué)沒(méi)有    時(shí)間: 2025-3-25 23:00
https://doi.org/10.1007/978-3-658-10138-1We return to homology, seeking to compute homology groups more effectively. The spaces for which this search is successful, the so-called CW complexes introduced by J. H. C. Whitehead, generalize simplicial complexes; they have also proved to be of fundamental importance in homotopy theory.
作者: Insul島    時(shí)間: 2025-3-26 02:31
Ellen Banzhaf,Sigrun Kabisch,Dieter RinkWhen first computing .(.), we looked to winding numbers for inspiration.
作者: 細(xì)節(jié)    時(shí)間: 2025-3-26 06:21
Gesunde und resiliente Quartiere für KinderCohomology is a contravariant version of homology. Although it is not difficult to define, let us first give some background for it.
作者: Harridan    時(shí)間: 2025-3-26 10:40

作者: 召集    時(shí)間: 2025-3-26 13:42

作者: Bumble    時(shí)間: 2025-3-26 19:13
Excision and Applications,The last fundamental property (or axiom) of homology is .. We state two versions. If . is a subspace of ., then . denotes its closure and .° denotes its interior.
作者: Fester    時(shí)間: 2025-3-26 23:05
CW Complexes,We return to homology, seeking to compute homology groups more effectively. The spaces for which this search is successful, the so-called CW complexes introduced by J. H. C. Whitehead, generalize simplicial complexes; they have also proved to be of fundamental importance in homotopy theory.
作者: CHECK    時(shí)間: 2025-3-27 01:38
Covering Spaces,When first computing .(.), we looked to winding numbers for inspiration.
作者: 樂(lè)器演奏者    時(shí)間: 2025-3-27 08:01

作者: 上坡    時(shí)間: 2025-3-27 12:41

作者: 讓你明白    時(shí)間: 2025-3-27 15:33

作者: 小淡水魚    時(shí)間: 2025-3-27 20:11

作者: AER    時(shí)間: 2025-3-28 01:25

作者: Pamphlet    時(shí)間: 2025-3-28 02:55
Long Exact Sequences,lgebraic. Let us now acquaint ourselves with the algebraic half of the definition in order to establish the existence of certain long exact sequences; these are very useful for calculation because they display connections between the homology of a space and the homology of its subspaces.
作者: 手勢(shì)    時(shí)間: 2025-3-28 08:15
https://doi.org/10.1007/978-3-658-10138-1this is not so). Many interesting spaces, as the torus, can be “triangulated”, and we shall see that this (strong) condition greatly facilitates calculation of homology groups. Moreover, we shall also be able to give a presentation of the fundamental groups of such spaces.
作者: 江湖騙子    時(shí)間: 2025-3-28 10:52

作者: START    時(shí)間: 2025-3-28 17:15

作者: Dorsal    時(shí)間: 2025-3-28 19:53
Introduction,out topological spaces and continuous functions into problems about algebraic objects (e.g., groups, rings, vector spaces) and their homomorphisms; the method may succeed when the algebraic problem is easier than the original one. Before giving the appropriate setting, we illustrate how the method w
作者: recession    時(shí)間: 2025-3-29 02:47

作者: 下垂    時(shí)間: 2025-3-29 05:47
Singular Homology,hether a union of .-simplexes in a space . that “ought” to be the boundary of some union of (. + 1)-simplexes in X actually is such a boundary. Consider the case . = 0; a 0-simplex in . is a point. Given two points x., x. ∈ ., they “ought” to be the endpoints of a 1-simplex; that is, there ought to
作者: landmark    時(shí)間: 2025-3-29 07:15

作者: flamboyant    時(shí)間: 2025-3-29 13:05
Simplicial Complexes,few cases in which we could compute these groups. At this point, however, we would have difficulty computing the homology groups of a space as simple as the torus . = . x .; indeed .(.) is uncountable for every . ≥ 0, so it is conceivable that .(.) is uncountable for every . (we shall soon see that
作者: 分發(fā)    時(shí)間: 2025-3-29 17:02

作者: 令人苦惱    時(shí)間: 2025-3-29 21:45
Homotopy Groups,s from S. into .. It is thus quite natural to consider (pointed) maps of . into a space .; their homotopy classes will be elements of the . .(., x.). This chapter gives the basic properties of the homotopy groups; in particular, it will be seen that they satisfy every Eilenberg-Steenrod axiom save e
作者: hermitage    時(shí)間: 2025-3-30 02:10
9樓
作者: 擔(dān)心    時(shí)間: 2025-3-30 04:43
9樓
作者: 高腳酒杯    時(shí)間: 2025-3-30 12:04
9樓
作者: Gustatory    時(shí)間: 2025-3-30 14:50
10樓
作者: Asseverate    時(shí)間: 2025-3-30 17:19
10樓
作者: 失望未來(lái)    時(shí)間: 2025-3-30 23:37
10樓
作者: 反應(yīng)    時(shí)間: 2025-3-31 03:16
10樓




歡迎光臨 派博傳思國(guó)際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
镇沅| 清徐县| 民和| 遂昌县| 当涂县| 清水县| 江城| 镇雄县| 射阳县| 汤原县| 邳州市| 遂川县| 禹城市| 阳江市| 永福县| 连平县| 巴里| 图木舒克市| 水城县| 自贡市| 从化市| 厦门市| 东乌珠穆沁旗| 大田县| 通江县| 浙江省| 遂平县| 鸡西市| 右玉县| 电白县| 永济市| 资中县| 东乡县| 蓬安县| 桃园市| 乌拉特中旗| 石楼县| 余江县| 昭觉县| 托克逊县| 广昌县|