標(biāo)題: Titlebook: An Axiomatic Basis for Quantum Mechanics; Volume 1 Derivation Günther Ludwig Book 1985 Springer-Verlag Berlin Heidelberg 1985 Mechanics.Sp [打印本頁(yè)] 作者: ACE313 時(shí)間: 2025-3-21 19:36
書(shū)目名稱(chēng)An Axiomatic Basis for Quantum Mechanics影響因子(影響力)
書(shū)目名稱(chēng)An Axiomatic Basis for Quantum Mechanics影響因子(影響力)學(xué)科排名
書(shū)目名稱(chēng)An Axiomatic Basis for Quantum Mechanics網(wǎng)絡(luò)公開(kāi)度
書(shū)目名稱(chēng)An Axiomatic Basis for Quantum Mechanics網(wǎng)絡(luò)公開(kāi)度學(xué)科排名
書(shū)目名稱(chēng)An Axiomatic Basis for Quantum Mechanics被引頻次
書(shū)目名稱(chēng)An Axiomatic Basis for Quantum Mechanics被引頻次學(xué)科排名
書(shū)目名稱(chēng)An Axiomatic Basis for Quantum Mechanics年度引用
書(shū)目名稱(chēng)An Axiomatic Basis for Quantum Mechanics年度引用學(xué)科排名
書(shū)目名稱(chēng)An Axiomatic Basis for Quantum Mechanics讀者反饋
書(shū)目名稱(chēng)An Axiomatic Basis for Quantum Mechanics讀者反饋學(xué)科排名
作者: Alopecia-Areata 時(shí)間: 2025-3-22 00:09
he funda- mental concepts of quantum mechanics solely from a description of macroscopic devices. The microscopic systems such as electrons, atoms, etc. must be detected on the basis of the macroscopic behavior of the devices. This detection resembles the detection of the dinosaurs on the basis offos作者: NEX 時(shí)間: 2025-3-22 02:43 作者: patella 時(shí)間: 2025-3-22 08:24 作者: ureter 時(shí)間: 2025-3-22 11:33 作者: Loathe 時(shí)間: 2025-3-22 15:20 作者: left-ventricle 時(shí)間: 2025-3-22 20:40 作者: nitroglycerin 時(shí)間: 2025-3-23 00:56
,Representation of ?, ?’ by Banach Spaces of Operators in a Hilbert Space,th the set of self-adjoint operators of the trace class and ?’. with the set. of all bounded, self-adjoint operators, so that . (.) = tr (.). Then Kν is the set of all operators . ∈ ?. with . ≧ 0, tr(.)= 1, while L. is the set of all operators . ∈ ?’. with . ≦.≦ 作者: debacle 時(shí)間: 2025-3-23 01:23 作者: 嚴(yán)峻考驗(yàn) 時(shí)間: 2025-3-23 08:03
Die Methode der finiten Elemente preparator. That this is difficult is shown not only by the uncertainty if introducing the concept observable via the “correspondence principle” (see [1] XI § 1.7), but in particular by the fact that one has not yet used the concept of preparator and for this reason encountered great difficulties with the Einstein-Podolski-Rosen paradox.作者: PAD416 時(shí)間: 2025-3-23 10:42 作者: 疼死我了 時(shí)間: 2025-3-23 13:54 作者: LAY 時(shí)間: 2025-3-23 21:20 作者: 極大的痛苦 時(shí)間: 2025-3-24 00:02 作者: thrombosis 時(shí)間: 2025-3-24 03:47 作者: 聲音刺耳 時(shí)間: 2025-3-24 08:11
Embedding of Ensembles and Effect Sets in Topological Vector Spaces, × . . [0,1] for which III T 5.1.4 and the relations APK and ARK (from III § § 5.3) hold. Hence we shall not gain new physical insights, but rather arrange the mathematical framework so flexibly that it is comfortable (!) to formulate further axioms and to prove theorems. Nevertheless, we shall use 作者: 隱藏 時(shí)間: 2025-3-24 13:39
Observables and Preparators,hen we have forgotten “too much” to describe physical systems as effect carriers. Let us try to amend this by introducing the concepts “observable” and “preparator”. These concepts represent abstract and idealized residues from the structure of preparation and registration procedures. Without fallin作者: wangle 時(shí)間: 2025-3-24 18:38 作者: 漫不經(jīng)心 時(shí)間: 2025-3-24 22:49
,Representation of ?, ?’ by Banach Spaces of Operators in a Hilbert Space,ere is a Hilbert space ?. over the field . of real numbers or over the . of complex numbers or over the . of quaternions where ?. can be identified with the set of self-adjoint operators of the trace class and ?’. with the set. of all bounded, self-adjoint operators, so that . (.) = tr (.). Then Kν 作者: deceive 時(shí)間: 2025-3-24 23:41
http://image.papertrans.cn/a/image/154901.jpg作者: 束以馬具 時(shí)間: 2025-3-25 05:59
https://doi.org/10.1007/978-3-658-42642-2eories. Therefore, we cannot start with a set . interpreted as a set of microsystems as in [2] (see [3] § 5 for abbreviated formulations such as “set of microsystems”). We rather “question” the existence of a microsystem, i.e. we will theoretically retrace the discovery of microsystems. In the theor作者: floodgate 時(shí)間: 2025-3-25 09:16 作者: Vsd168 時(shí)間: 2025-3-25 14:29
Die Methode der finiten Elementehen we have forgotten “too much” to describe physical systems as effect carriers. Let us try to amend this by introducing the concepts “observable” and “preparator”. These concepts represent abstract and idealized residues from the structure of preparation and registration procedures. Without fallin作者: 聯(lián)想記憶 時(shí)間: 2025-3-25 19:10
https://doi.org/10.1007/978-3-642-57250-0 characterize the directed actions in nature. Hence, we must add axioms (laws in the sense of [3] § 7.3) and thus try to approach (by standard extension in the sense of [3] § 8) a g. G.-closed theory of “microsystems”. Here, the word “microsystem” is to characterize (initially inexactly) the fundame作者: GRATE 時(shí)間: 2025-3-25 22:23 作者: 友好關(guān)系 時(shí)間: 2025-3-26 02:19 作者: Mundane 時(shí)間: 2025-3-26 08:19
978-3-642-70031-6Springer-Verlag Berlin Heidelberg 1985作者: Curmudgeon 時(shí)間: 2025-3-26 10:55
Erratum to: Der Tauschwerth des Waldbodens,In [3], [30] and [48] we formulated the objective of finding, for a physical theory, an axiomatic basis with “physically interpretable axioms” (see [30] and XIII § 2), wherein the physical laws appear distinctly and whereby the problems of interpretation can be solved clearly. In this book, we attack this objective for quantum mechanics.作者: 引起痛苦 時(shí)間: 2025-3-26 15:54
https://doi.org/10.1007/978-3-658-42642-2Since we intend to develop an axiomatic basis for quantum mechanics, we must delve into the pretheories for quantum mechanics in order to describe the fundamental domain of quantum mechanics (see [1] III §§ 2 and 4; or, to be precise, [3] §§ 3 and 5). Nevertheless, to understand the following it is not necessary to have read [1] or [3] or [30].作者: AMITY 時(shí)間: 2025-3-26 18:52 作者: propose 時(shí)間: 2025-3-26 22:26 作者: 開(kāi)始沒(méi)有 時(shí)間: 2025-3-27 02:32
Pretheories for Quantum Mechanics,Since we intend to develop an axiomatic basis for quantum mechanics, we must delve into the pretheories for quantum mechanics in order to describe the fundamental domain of quantum mechanics (see [1] III §§ 2 and 4; or, to be precise, [3] §§ 3 and 5). Nevertheless, to understand the following it is not necessary to have read [1] or [3] or [30].作者: 斗志 時(shí)間: 2025-3-27 08:14 作者: jettison 時(shí)間: 2025-3-27 12:13
8樓作者: Allege 時(shí)間: 2025-3-27 16:13
8樓作者: Juvenile 時(shí)間: 2025-3-27 21:02
9樓作者: LITHE 時(shí)間: 2025-3-27 23:37
9樓作者: exostosis 時(shí)間: 2025-3-28 02:43
9樓作者: spondylosis 時(shí)間: 2025-3-28 07:37
10樓作者: 輕快帶來(lái)危險(xiǎn) 時(shí)間: 2025-3-28 12:24
10樓作者: Decibel 時(shí)間: 2025-3-28 17:18
10樓作者: 小歌劇 時(shí)間: 2025-3-28 20:41
10樓