派博傳思國(guó)際中心

標(biāo)題: Titlebook: Algebroid Curves in Positive Characteristics; Antonio Campillo Book 1980 Springer-Verlag Berlin Heidelberg 1980 Algebroide Kurve.Invariant [打印本頁(yè)]

作者: 漏出    時(shí)間: 2025-3-21 18:35
書目名稱Algebroid Curves in Positive Characteristics影響因子(影響力)




書目名稱Algebroid Curves in Positive Characteristics影響因子(影響力)學(xué)科排名




書目名稱Algebroid Curves in Positive Characteristics網(wǎng)絡(luò)公開(kāi)度




書目名稱Algebroid Curves in Positive Characteristics網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Algebroid Curves in Positive Characteristics被引頻次




書目名稱Algebroid Curves in Positive Characteristics被引頻次學(xué)科排名




書目名稱Algebroid Curves in Positive Characteristics年度引用




書目名稱Algebroid Curves in Positive Characteristics年度引用學(xué)科排名




書目名稱Algebroid Curves in Positive Characteristics讀者反饋




書目名稱Algebroid Curves in Positive Characteristics讀者反饋學(xué)科排名





作者: 作嘔    時(shí)間: 2025-3-21 21:18
Other systems of invariants for the equisingularity of plane algebroid curves,teristic exponents..The first of them is explained in the first section and it is formed by the Newton coefficients given by Lejeune in (15). In the second section we study briefly the maximal contact of any genus, using Hamburger-Noether expansions. The third section is devoted to the semigroup of
作者: Concomitant    時(shí)間: 2025-3-22 01:19

作者: 眼界    時(shí)間: 2025-3-22 07:04

作者: 根除    時(shí)間: 2025-3-22 12:26

作者: Ruptured-Disk    時(shí)間: 2025-3-22 15:49
https://doi.org/10.1007/978-3-031-15397-6The purpose of this chapter is to give the technical material which will be used in the following chapters. In the first section we shall see that there is no possibility of obtaining Puiseux expansion in positive characteristic. The Hamburger-Noether expansions, which will replace the Puiseux ones, are developed in the remaining sections.
作者: EXUDE    時(shí)間: 2025-3-22 18:40

作者: Gerontology    時(shí)間: 2025-3-22 22:34

作者: Narrative    時(shí)間: 2025-3-23 05:27
Delali A. Gawu,Richard Obeng Mensahs the construction of a complete system of invariants for the equiresolution. These invariants will be called characteristic exponents. In the characteristic zero case they are computed in the usual way by means of Puiseux expansions. In positive characteristic and in successive sections, we shall c
作者: HEPA-filter    時(shí)間: 2025-3-23 05:41

作者: Lyme-disease    時(shí)間: 2025-3-23 12:17
Democratic Government in Poland Three definitions of equisingularity, which coincide for plane curves with the (a)-equisingularity, are given..The first one classifies singularities by means of equiresolution of the generic plane projections, the second one by equiresolution using space quadratic transformations, and the third on
作者: evanescent    時(shí)間: 2025-3-23 15:53
https://doi.org/10.1007/BFb0090823Algebroide Kurve; Invariant; algebroid; character; singularity; ?quisingularit?t
作者: 間接    時(shí)間: 2025-3-23 21:18
978-3-540-10022-5Springer-Verlag Berlin Heidelberg 1980
作者: FAR    時(shí)間: 2025-3-24 00:08
Algebroid Curves in Positive Characteristics978-3-540-38178-5Series ISSN 0075-8434 Series E-ISSN 1617-9692
作者: dearth    時(shí)間: 2025-3-24 03:38
0075-8434 Overview: 978-3-540-10022-5978-3-540-38178-5Series ISSN 0075-8434 Series E-ISSN 1617-9692
作者: 令人苦惱    時(shí)間: 2025-3-24 07:29

作者: 國(guó)家明智    時(shí)間: 2025-3-24 11:04

作者: 生命層    時(shí)間: 2025-3-24 16:09

作者: 身心疲憊    時(shí)間: 2025-3-24 20:37
Characteristic exponents of plane algebroid curves,Since the equisingularity will be considered in this chapter, we begin it by giving in the first section, a short account of Zariski‘s theory of equisingularity for plane curves and its meaning in the case of germs of complex analytic curves..Throughout all this chapter, the word "curve" will stand for plane curve.
作者: 朦朧    時(shí)間: 2025-3-25 01:18
Democratic Government in Poland by means of equiresolution of the generic plane projections, the second one by equiresolution using space quadratic transformations, and the third one by the semigroup of values. However, we shall prove that in general they are different. On the other hand, none of them may be considered as a better definition than the other ones.
作者: CHASE    時(shí)間: 2025-3-25 03:29

作者: peptic-ulcer    時(shí)間: 2025-3-25 08:01
6樓
作者: Hallmark    時(shí)間: 2025-3-25 12:49
7樓
作者: 影響深遠(yuǎn)    時(shí)間: 2025-3-25 19:06
7樓
作者: 聲音刺耳    時(shí)間: 2025-3-25 23:53
7樓
作者: 完成    時(shí)間: 2025-3-26 02:57
7樓
作者: 易發(fā)怒    時(shí)間: 2025-3-26 06:12
8樓
作者: 后天習(xí)得    時(shí)間: 2025-3-26 10:34
8樓
作者: extemporaneous    時(shí)間: 2025-3-26 15:05
8樓
作者: quiet-sleep    時(shí)間: 2025-3-26 17:51
8樓
作者: 保全    時(shí)間: 2025-3-27 00:12
9樓
作者: Blanch    時(shí)間: 2025-3-27 01:31
9樓
作者: 草本植物    時(shí)間: 2025-3-27 08:45
9樓
作者: 臭名昭著    時(shí)間: 2025-3-27 10:59
10樓
作者: FIG    時(shí)間: 2025-3-27 16:28
10樓
作者: Aggregate    時(shí)間: 2025-3-27 20:16
10樓
作者: Intact    時(shí)間: 2025-3-28 00:09
10樓




歡迎光臨 派博傳思國(guó)際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
北宁市| 阿鲁科尔沁旗| 阿鲁科尔沁旗| 宝鸡市| 临漳县| 曲麻莱县| 翁源县| 大石桥市| 郎溪县| 娱乐| 若羌县| 临夏县| 会宁县| 沭阳县| 舟山市| 赤峰市| 观塘区| 乐亭县| 昌邑市| 丰镇市| 大荔县| 武冈市| 青田县| 墨玉县| 邵东县| 临城县| 西峡县| 洮南市| 申扎县| 桐柏县| 三河市| 岳池县| 杨浦区| 海丰县| 道真| 阿城市| 金坛市| 平湖市| 湖州市| 莱芜市| 龙州县|