派博傳思國際中心

標(biāo)題: Titlebook: Algebraic Topology; Clark Bray,Adrian Butscher,Simon Rubinstein-Salzed Textbook 2021 Springer Nature Switzerland AG 2021 surfaces.cosets.q [打印本頁]

作者: 孵化    時間: 2025-3-21 17:07
書目名稱Algebraic Topology影響因子(影響力)




書目名稱Algebraic Topology影響因子(影響力)學(xué)科排名




書目名稱Algebraic Topology網(wǎng)絡(luò)公開度




書目名稱Algebraic Topology網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Algebraic Topology被引頻次




書目名稱Algebraic Topology被引頻次學(xué)科排名




書目名稱Algebraic Topology年度引用




書目名稱Algebraic Topology年度引用學(xué)科排名




書目名稱Algebraic Topology讀者反饋




書目名稱Algebraic Topology讀者反饋學(xué)科排名





作者: 單色    時間: 2025-3-21 22:49

作者: Ingest    時間: 2025-3-22 01:29
Stefan Berger,Stefano Musso,Christian Wickemorphism invariant that is associated to a topological space. Rather than being a number like the Euler characteristic . or a boolean invariant like orientability, the fundamental group?associates a . to ., denoted .. Furthermore if . is homeomorphic to ., then the fundamental groups . and . are iso
作者: Nostalgia    時間: 2025-3-22 06:23
Milan, the Story of an Urban Metamorphosismany more spaces whose fundamental groups we would like to know. In order to work them out, we will try to build them up from spaces whose fundamental groups we already know. Before we introduce the general theorem, let us look at an example, that of the wedge of two circles, meaning two circles tha
作者: Endemic    時間: 2025-3-22 10:33
Stefan Berger,Stefano Musso,Christian Wicketing maps from the circle . to a space .. There are higher-dimensional versions of the fundamental group, known as homotopy groups and denoted by .; these are defined in terms of homotopy classes of maps from . to .. In computing ., we already found that we needed a somewhat involved argument. Nonet
作者: 集中營    時間: 2025-3-22 13:14

作者: 獨特性    時間: 2025-3-22 17:53
https://doi.org/10.1007/978-3-030-70608-1surfaces; cosets; quotient groups; normal subgroups; Mayer-Vietoris sequence; homology; Seifert-Van Kampen
作者: 用肘    時間: 2025-3-22 22:09

作者: Ballerina    時間: 2025-3-23 04:14
Introduction to Group Theory, spaces are homeomorphic or not. However, there is a wide class of other invariants, which associate other sorts of objects to spaces. For the next few chapters, we will build up?to the fundamental group, and then we will work on understanding its behavior.
作者: 為寵愛    時間: 2025-3-23 07:19

作者: 音樂戲劇    時間: 2025-3-23 12:08

作者: 閃光你我    時間: 2025-3-23 15:37
Die Zwischenbilanz: das erste StudienjahrLet us take a moment to remind ourselves of the definition of a surface given in the previous chapter (Definition?1.1). We introduce the terminology . to mean ..
作者: Angiogenesis    時間: 2025-3-23 18:05
https://doi.org/10.1007/978-3-662-43419-2The goal of this chapter is to describe a useful homeomorphism invariant of surfaces known as the .. In order to do that, we need to discuss the notion of a . of a surface.
作者: 教唆    時間: 2025-3-24 02:03
https://doi.org/10.1007/978-3-662-43419-2We now take a small diversion to discuss some interesting properties of the projective plane and the Klein bottle that we introduced in the previous chapter. Recall that these are . that exist in their own right, without reference to an embedding space like ., but which nonetheless are locally homeomorphic to open sets in the plane.
作者: inspired    時間: 2025-3-24 05:39

作者: Diuretic    時間: 2025-3-24 06:52

作者: URN    時間: 2025-3-24 11:40

作者: Subjugate    時間: 2025-3-24 15:27
Stefan Berger,Stefano Musso,Christian WickeWe have worked quite hard to find a space whose fundamental group?is non-trivial. We should capitalize on this result and see if we can find other, related spaces whose fundamental groups can now be computed easily as a result of our hard work. An example where this approach is successful is for ..
作者: 愛好    時間: 2025-3-24 20:12

作者: MONY    時間: 2025-3-24 23:19
Surface Preliminaries,One of the main objects of study in this book is that of a surface. We will thus spend a good deal of time in the first two chapters explaining what a surface is.
作者: ANN    時間: 2025-3-25 03:43
Surfaces,Let us take a moment to remind ourselves of the definition of a surface given in the previous chapter (Definition?1.1). We introduce the terminology . to mean ..
作者: 植物群    時間: 2025-3-25 10:59

作者: 匯總    時間: 2025-3-25 15:05

作者: mucous-membrane    時間: 2025-3-25 17:25
Structure of Groups,This chapter is an introduction to the rich structure possessed by a set endowed with a group operation. The first notion we will explore is that of ., or?subsets of a group that themselves satisfy all the properties of a group.
作者: Axillary    時間: 2025-3-25 20:50
Cosets, Normal Subgroups, and Quotient Groups,There are several very important constructions that one can obtain from a group . and a subgroup ..
作者: agonist    時間: 2025-3-26 01:39

作者: PANG    時間: 2025-3-26 05:48

作者: 小畫像    時間: 2025-3-26 09:30

作者: Paleontology    時間: 2025-3-26 14:11
Clark Bray,Adrian Butscher,Simon Rubinstein-SalzedAssumes no background in abstract algebra or real analysis.Contains a number of examples and exercises.Is based on years of classroom testing
作者: Extricate    時間: 2025-3-26 18:52
http://image.papertrans.cn/a/image/152726.jpg
作者: 反復(fù)拉緊    時間: 2025-3-26 21:54

作者: 惡意    時間: 2025-3-27 05:00
Milan, the Story of an Urban Metamorphosismany more spaces whose fundamental groups we would like to know. In order to work them out, we will try to build them up from spaces whose fundamental groups we already know. Before we introduce the general theorem, let us look at an example, that of the wedge of two circles, meaning two circles that intersect at exactly one point (see Figure?.).
作者: 松馳    時間: 2025-3-27 07:51

作者: CURT    時間: 2025-3-27 12:15
The Fundamental Group,morphism invariant that is associated to a topological space. Rather than being a number like the Euler characteristic . or a boolean invariant like orientability, the fundamental group?associates a . to ., denoted .. Furthermore if . is homeomorphic to ., then the fundamental groups . and . are iso
作者: anatomical    時間: 2025-3-27 14:57
,The Seifert–Van Kampen Theorem,many more spaces whose fundamental groups we would like to know. In order to work them out, we will try to build them up from spaces whose fundamental groups we already know. Before we introduce the general theorem, let us look at an example, that of the wedge of two circles, meaning two circles tha
作者: FILTH    時間: 2025-3-27 21:40

作者: prosperity    時間: 2025-3-27 22:35
,The Mayer–Vietoris Sequence,ace would require a lot of simplices and matrix manipulations! We were able to compute the . for an arbitrary surface using the Seifert–Van Kampen Theorem, breaking it up into smaller regions and splicing together their fundamental groups. In particular, we were able to express . in terms of ., ., .
作者: CAPE    時間: 2025-3-28 03:19
The Fundamental Group,morphic in the group-theoretic sense. In this chapter, we will build up a set of ideas for defining the fundamental group. For visualization purposes, we will phrase these ideas as if . were a surface; but everything that follows holds mostly unchanged for any topological space.
作者: MEEK    時間: 2025-3-28 07:17

作者: 蒙太奇    時間: 2025-3-28 11:16

作者: 人類學(xué)家    時間: 2025-3-28 16:31
Stefan Berger,Stefano Musso,Christian Wickeorem, breaking it up into smaller regions and splicing together their fundamental groups. In particular, we were able to express . in terms of ., ., ., and some information about how they all fit together.
作者: cloture    時間: 2025-3-28 22:34
Introduction to Homology,hese are defined in terms of homotopy classes of maps from . to .. In computing ., we already found that we needed a somewhat involved argument. Nonetheless, as we learned when studying the Seifert–Van Kampen Theorem, there is a general method for computing fundamental groups of nice spaces.
作者: auxiliary    時間: 2025-3-29 00:14
,The Mayer–Vietoris Sequence,orem, breaking it up into smaller regions and splicing together their fundamental groups. In particular, we were able to express . in terms of ., ., ., and some information about how they all fit together.
作者: locus-ceruleus    時間: 2025-3-29 06:29

作者: 衰弱的心    時間: 2025-3-29 09:32

作者: 沙文主義    時間: 2025-3-29 12:25
Textbook 2021 needed in the text. This makes the book readable to undergraduates or high-school students who do not have the background typically assumed in an algebraic topology book or class. The book contains many examples and exercises, allowing it to be used for both self-study and for an introductory undergraduate topology course..
作者: committed    時間: 2025-3-29 17:09
Crystal structures, arrangements where the interatomic interactions are strong enough to keep the atoms bound at well defined positions. We will address the bonding mechanisms leading to the formation of the crystals, the electronic structure and the vibrational dynamics of the atoms. The liquid and solid states are s
作者: 修飾    時間: 2025-3-29 21:16
Der richtige Umgang mit Batterien,einmal unter einem Stichwort wie ?Li-Batteriebr?nde“ oder ?Explodierende Batterien“ usw., dann finden Sie zum Teil witzige, zum Teil be?ngstigende und schreckliche Filme, Fotos und Schadenschilderungen von pl?tzlich stark explodierenden Akkus und Batterien.
作者: antidote    時間: 2025-3-30 03:50

作者: Disk199    時間: 2025-3-30 05:20

作者: 首創(chuàng)精神    時間: 2025-3-30 09:55

作者: heterogeneous    時間: 2025-3-30 13:20

作者: malign    時間: 2025-3-30 17:14

作者: cocoon    時間: 2025-3-30 22:12

作者: 焦慮    時間: 2025-3-31 04:25

作者: 大氣層    時間: 2025-3-31 09:02

作者: OTHER    時間: 2025-3-31 09:48





歡迎光臨 派博傳思國際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
辉县市| 高邑县| 泾川县| 温泉县| 孟州市| 五华县| 洛浦县| 南郑县| 罗平县| 新野县| 旌德县| 长乐市| 石嘴山市| 平利县| 临潭县| 连平县| 石台县| 江川县| 永济市| 勐海县| 四子王旗| 苏尼特左旗| 安宁市| 鸡西市| 罗定市| 和龙市| 庆云县| 张家川| 桐乡市| 蓬莱市| 桂东县| 阿图什市| 大安市| 玉环县| 苏州市| 西乌珠穆沁旗| 商河县| 哈尔滨市| 漳州市| 辽源市| 海晏县|