標題: Titlebook: Algebraic Theory of Quadratic Numbers; Mak Trifkovi? Textbook 2013 Springer Science+Business Media New York 2013 ideal class group.number [打印本頁] 作者: Thoracic 時間: 2025-3-21 19:48
書目名稱Algebraic Theory of Quadratic Numbers影響因子(影響力)
書目名稱Algebraic Theory of Quadratic Numbers影響因子(影響力)學科排名
書目名稱Algebraic Theory of Quadratic Numbers網(wǎng)絡公開度
書目名稱Algebraic Theory of Quadratic Numbers網(wǎng)絡公開度學科排名
書目名稱Algebraic Theory of Quadratic Numbers被引頻次
書目名稱Algebraic Theory of Quadratic Numbers被引頻次學科排名
書目名稱Algebraic Theory of Quadratic Numbers年度引用
書目名稱Algebraic Theory of Quadratic Numbers年度引用學科排名
書目名稱Algebraic Theory of Quadratic Numbers讀者反饋
書目名稱Algebraic Theory of Quadratic Numbers讀者反饋學科排名
作者: Breach 時間: 2025-3-21 22:30 作者: Resign 時間: 2025-3-22 04:19 作者: Ordeal 時間: 2025-3-22 05:52
Degeneracy Graphs and Simplex Cyclingd explore them with the tools of linear algebra. For this we’ll need a simple bit of terminology. Let . be a complex vector space and . any subring of .. A linear combination . with coefficients .. ∈ . is said to be ., or .. Similar terminology applies to other linear algebra constructs: we talk of 作者: 公理 時間: 2025-3-22 10:59
https://doi.org/10.1007/978-1-4614-7717-4ideal class group; number theory; quadratic forms; ring theory作者: TOM 時間: 2025-3-22 13:53 作者: obsession 時間: 2025-3-22 17:52
Basic Technique of Total Knee ArthroplastyWhen can we express a prime number as a sum of two squares? Let’s start by sorting the first dozen primes into those with such an expression, and the rest: . Do you see a pattern?作者: hyperuricemia 時間: 2025-3-23 00:19
Basic Technique of Total Knee ArthroplastyIn . we can add, subtract, and multiply without restrictions, but we can’t always divide. That is what makes questions of divisibility and factorization interesting. To do arithmetic in more general number systems, we abstract these basic properties of . to get the definition of a ring.作者: 瑣碎 時間: 2025-3-23 03:00 作者: 焦慮 時間: 2025-3-23 08:00 作者: 殺人 時間: 2025-3-23 12:57
https://doi.org/10.1007/978-3-642-49270-9When we write . = 3. 141592., we really mean that . be approximated (the “…” part) by the rational number ..作者: Foolproof 時間: 2025-3-23 17:38
https://doi.org/10.1007/978-1-4612-0885-3In this final chapter we go back to the late-eighteenth-century roots of algebraic number theory. Its fathers, Lagrange, Legendre, and Gauss, had none of the algebraic machinery we have used.作者: abduction 時間: 2025-3-23 19:01 作者: vitrectomy 時間: 2025-3-24 01:26 作者: 使虛弱 時間: 2025-3-24 02:35 作者: Arctic 時間: 2025-3-24 09:01
The Ideal Class Group and the Geometry of Numbers,It turns out that the group of fractional ideals . is not an interesting invariant of the quadratic field .: for different fields ., ., Exer. 5.1.7 shows that .. To get an object which does reflect the arithmetic of ., we consider a quotient of ..作者: motor-unit 時間: 2025-3-24 11:29
Continued Fractions,When we write . = 3. 141592., we really mean that . be approximated (the “…” part) by the rational number ..作者: Pandemic 時間: 2025-3-24 17:44 作者: Iniquitous 時間: 2025-3-24 22:48
Algebraic Theory of Quadratic Numbers978-1-4614-7717-4Series ISSN 0172-5939 Series E-ISSN 2191-6675 作者: Ancillary 時間: 2025-3-25 00:08
Textbook 2013experience with elements and ideals in quadratic number fields.? The reader is also asked to fill in the details of proofs and develop extra topics, like the theory of orders.? Prerequisites include elementary number theory and a basic familiarity with ring theory..作者: Alpha-Cells 時間: 2025-3-25 04:56
Textbook 2013o have yet to learn Galois theory. The techniques of elementary arithmetic, ring theory and linear algebra are shown working together to prove important theorems, such as the unique factorization of ideals and the finiteness of the ideal class group.? The book concludes with two topics particular to作者: 滔滔不絕地說 時間: 2025-3-25 11:22 作者: Oscillate 時間: 2025-3-25 12:38 作者: inflame 時間: 2025-3-25 19:29 作者: Between 時間: 2025-3-25 21:37
0172-5939 to fill in the details of proofs and develop extra topics, like the theory of orders.? Prerequisites include elementary number theory and a basic familiarity with ring theory..978-1-4614-7716-7978-1-4614-7717-4Series ISSN 0172-5939 Series E-ISSN 2191-6675 作者: 公式 時間: 2025-3-26 01:17
7樓作者: 宣傳 時間: 2025-3-26 04:26
7樓作者: 運氣 時間: 2025-3-26 09:48
7樓作者: Ingrained 時間: 2025-3-26 13:08
7樓作者: 災難 時間: 2025-3-26 17:17
8樓作者: Fatten 時間: 2025-3-26 21:01
8樓作者: encyclopedia 時間: 2025-3-27 01:19
8樓作者: OTTER 時間: 2025-3-27 06:20
8樓作者: 共棲 時間: 2025-3-27 10:39
9樓作者: BLANC 時間: 2025-3-27 17:07
9樓作者: arthrodesis 時間: 2025-3-27 18:09
9樓作者: 你不公正 時間: 2025-3-28 01:43
10樓作者: opalescence 時間: 2025-3-28 02:56
10樓作者: Intrepid 時間: 2025-3-28 07:56
10樓作者: AGATE 時間: 2025-3-28 14:10
10樓