作者: 許可 時(shí)間: 2025-3-21 20:28
Algebraic Surfaces978-1-4757-3512-3Series ISSN 0172-5939 Series E-ISSN 2191-6675 作者: 過(guò)于平凡 時(shí)間: 2025-3-22 02:28 作者: 范例 時(shí)間: 2025-3-22 06:58
Deformation Processes in TRIP/TWIP SteelsThroughout this chapter . will denote a nonsingular projective surface defined over an algebraically closed field k of arbitrary characteristic, and . will denote a canonical divisor on ..作者: 禁令 時(shí)間: 2025-3-22 10:12 作者: 卜聞 時(shí)間: 2025-3-22 14:20 作者: 我悲傷 時(shí)間: 2025-3-22 19:50
https://doi.org/10.1007/978-1-4419-1596-2From this point on by . we mean a nonsingular projective surface . defined over an algebraically closed field k of arbitrary characteristic. When we have to deal with surfaces with singularities, we state that explicitly (for example: let . be a normal surface...).作者: 盤(pán)旋 時(shí)間: 2025-3-22 22:14
https://doi.org/10.1007/978-1-4419-1596-2Let . be a surface. . is a . if every birational morphism . → ., with . surface (nonsingular and projective, just like .), is an isomorphism.作者: 哥哥噴涌而出 時(shí)間: 2025-3-23 03:58
Cohomology of Current Lie AlgebrasLet .: . → . be .*: k(.) → k(.) . k(.) . k(.). Then . V ? Y ..(.) ..作者: 保留 時(shí)間: 2025-3-23 08:02 作者: 季雨 時(shí)間: 2025-3-23 11:33 作者: 聲音刺耳 時(shí)間: 2025-3-23 17:16
Durability of High-Load Structures,In view of (9.3) and the proof of (8.3)(a), we have the following.作者: MAL 時(shí)間: 2025-3-23 20:02
https://doi.org/10.1007/978-3-662-46507-3In this chapter we present Zariski’s theory of finite generation of the graded algebra . (., .) associated to a divisor . on a surface ., cf. [Zar1] and some more recent developments related to this theory.作者: 鋼筆記下懲罰 時(shí)間: 2025-3-24 01:30 作者: 血友病 時(shí)間: 2025-3-24 02:26 作者: TAIN 時(shí)間: 2025-3-24 08:54 作者: 者變 時(shí)間: 2025-3-24 12:04 作者: 話 時(shí)間: 2025-3-24 18:25
Properties of Rational Singularities,Let f : X → Y be a desingularization of a normal singularity (Y, y), with Y an affine surface, E., ... , E. the irreducible components of the reduced fiber E = f.(y)., and L an invertible O.-module such that (L · E.) ≥ (ω. · E.), i = 1, ... , n. Then H.(X, L) = 0.作者: STERN 時(shí)間: 2025-3-24 20:18
,Noether’s Formula, the Picard Scheme, the Albanese Variety, and Plurigenera,From this point on by . we mean a nonsingular projective surface . defined over an algebraically closed field k of arbitrary characteristic. When we have to deal with surfaces with singularities, we state that explicitly (for example: let . be a normal surface...).作者: dowagers-hump 時(shí)間: 2025-3-25 00:03 作者: oxidize 時(shí)間: 2025-3-25 03:48
Morphisms from a Surface to a Curve. Elliptic and Quasielliptic Fibrations,Let .: . → . be .*: k(.) → k(.) . k(.) . k(.). Then . V ? Y ..(.) ..作者: jungle 時(shí)間: 2025-3-25 10:20
Canonical Dimension of an Elliptic or Quasielliptic Fibration,Let .: . → . be an elliptic or quasielliptic fibration. Theorem 7.15 expresses the dualizing sheaf ω. of . in the form 作者: 外貌 時(shí)間: 2025-3-25 13:04
Ruled Surfaces. The Noether-Tsen Criterion,A surface . is a . if there exists a nonsingular projective curve . such that . is birationally isomorphic to P. × ..作者: Mediocre 時(shí)間: 2025-3-25 16:41 作者: padding 時(shí)間: 2025-3-25 20:21
Zariski Decomposition and Applications,In this chapter we present Zariski’s theory of finite generation of the graded algebra . (., .) associated to a divisor . on a surface ., cf. [Zar1] and some more recent developments related to this theory.作者: 灌溉 時(shí)間: 2025-3-26 02:11 作者: 浪費(fèi)時(shí)間 時(shí)間: 2025-3-26 08:06 作者: BOAST 時(shí)間: 2025-3-26 10:06
978-1-4419-3149-8Springer-Verlag New York 2001作者: 袋鼠 時(shí)間: 2025-3-26 16:26
Murray Gerstenhaber,Samuel D. Schack let .: . → . be its canonical projection. Let . ∈ . be a closed point on the fiber .. = ..(.), . = . (.), and let .be the quadratic transformation of . with center .. Then the proper transform F′ of .. on .has ..(F′) = 0 and (F′.) = ?1, because ..(Fb) = 0 and (F..) = 0. In other words, F′ is an exc作者: GUILE 時(shí)間: 2025-3-26 18:25
Minimal Models of Ruled Surfaces, let .: . → . be its canonical projection. Let . ∈ . be a closed point on the fiber .. = ..(.), . = . (.), and let .be the quadratic transformation of . with center .. Then the proper transform F′ of .. on .has ..(F′) = 0 and (F′.) = ?1, because ..(Fb) = 0 and (F..) = 0. In other words, F′ is an exc作者: ovation 時(shí)間: 2025-3-26 23:09 作者: fledged 時(shí)間: 2025-3-27 03:57 作者: PALMY 時(shí)間: 2025-3-27 06:06
Minimal Models of Ruled Surfaces,eptional curve of the first kind. By (3.30), there exists a unique contraction .of F′ to a nonsingular point; we shall denote this contraction by cont .. As . is a morphism and .′ is a component of a fiber of . o π, we get a commutative diagram:作者: 地名表 時(shí)間: 2025-3-27 13:14 作者: 褻瀆 時(shí)間: 2025-3-27 17:25 作者: Heterodoxy 時(shí)間: 2025-3-27 20:19
,Surfaces with Canonical Dimension Zero (char(k) ≠ 2, 3),作者: Gleason-score 時(shí)間: 2025-3-28 01:46 作者: ARY 時(shí)間: 2025-3-28 03:21 作者: 后天習(xí)得 時(shí)間: 2025-3-28 06:36
5樓作者: 翻布尋找 時(shí)間: 2025-3-28 11:19
6樓作者: 容易懂得 時(shí)間: 2025-3-28 17:45
6樓作者: 最高峰 時(shí)間: 2025-3-28 21:57
6樓作者: 起皺紋 時(shí)間: 2025-3-29 03:00
6樓作者: 可憎 時(shí)間: 2025-3-29 04:09
7樓作者: nonradioactive 時(shí)間: 2025-3-29 07:42
7樓作者: 叢林 時(shí)間: 2025-3-29 14:02
7樓作者: 溫室 時(shí)間: 2025-3-29 16:01
7樓作者: infarct 時(shí)間: 2025-3-29 19:49
8樓作者: 殺死 時(shí)間: 2025-3-30 02:32
8樓作者: Evolve 時(shí)間: 2025-3-30 07:08
8樓作者: FICE 時(shí)間: 2025-3-30 11:43
8樓作者: Asymptomatic 時(shí)間: 2025-3-30 14:48
9樓作者: CHYME 時(shí)間: 2025-3-30 19:24
9樓作者: Acetabulum 時(shí)間: 2025-3-30 22:23
9樓作者: nettle 時(shí)間: 2025-3-31 00:53
10樓作者: 黃油沒(méi)有 時(shí)間: 2025-3-31 08:12
10樓作者: 不容置疑 時(shí)間: 2025-3-31 12:15
10樓作者: convert 時(shí)間: 2025-3-31 16:43
10樓