派博傳思國(guó)際中心

標(biāo)題: Titlebook: Algebraic Surfaces; Lucian B?descu Textbook 2001 Springer-Verlag New York 2001 Dimension.Divisor.Grad.Grothendieck topology.algebra.algebr [打印本頁(yè)]

作者: 無(wú)限    時(shí)間: 2025-3-21 17:12
書(shū)目名稱Algebraic Surfaces影響因子(影響力)




書(shū)目名稱Algebraic Surfaces影響因子(影響力)學(xué)科排名




書(shū)目名稱Algebraic Surfaces網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Algebraic Surfaces網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Algebraic Surfaces被引頻次




書(shū)目名稱Algebraic Surfaces被引頻次學(xué)科排名




書(shū)目名稱Algebraic Surfaces年度引用




書(shū)目名稱Algebraic Surfaces年度引用學(xué)科排名




書(shū)目名稱Algebraic Surfaces讀者反饋




書(shū)目名稱Algebraic Surfaces讀者反饋學(xué)科排名





作者: 許可    時(shí)間: 2025-3-21 20:28
Algebraic Surfaces978-1-4757-3512-3Series ISSN 0172-5939 Series E-ISSN 2191-6675
作者: 過(guò)于平凡    時(shí)間: 2025-3-22 02:28

作者: 范例    時(shí)間: 2025-3-22 06:58
Deformation Processes in TRIP/TWIP SteelsThroughout this chapter . will denote a nonsingular projective surface defined over an algebraically closed field k of arbitrary characteristic, and . will denote a canonical divisor on ..
作者: 禁令    時(shí)間: 2025-3-22 10:12

作者: 卜聞    時(shí)間: 2025-3-22 14:20

作者: 我悲傷    時(shí)間: 2025-3-22 19:50
https://doi.org/10.1007/978-1-4419-1596-2From this point on by . we mean a nonsingular projective surface . defined over an algebraically closed field k of arbitrary characteristic. When we have to deal with surfaces with singularities, we state that explicitly (for example: let . be a normal surface...).
作者: 盤(pán)旋    時(shí)間: 2025-3-22 22:14
https://doi.org/10.1007/978-1-4419-1596-2Let . be a surface. . is a . if every birational morphism . → ., with . surface (nonsingular and projective, just like .), is an isomorphism.
作者: 哥哥噴涌而出    時(shí)間: 2025-3-23 03:58
Cohomology of Current Lie AlgebrasLet .: . → . be .*: k(.) → k(.) . k(.) . k(.). Then . V ? Y ..(.) ..
作者: 保留    時(shí)間: 2025-3-23 08:02

作者: 季雨    時(shí)間: 2025-3-23 11:33

作者: 聲音刺耳    時(shí)間: 2025-3-23 17:16
Durability of High-Load Structures,In view of (9.3) and the proof of (8.3)(a), we have the following.
作者: MAL    時(shí)間: 2025-3-23 20:02
https://doi.org/10.1007/978-3-662-46507-3In this chapter we present Zariski’s theory of finite generation of the graded algebra . (., .) associated to a divisor . on a surface ., cf. [Zar1] and some more recent developments related to this theory.
作者: 鋼筆記下懲罰    時(shí)間: 2025-3-24 01:30

作者: 血友病    時(shí)間: 2025-3-24 02:26

作者: TAIN    時(shí)間: 2025-3-24 08:54

作者: 者變    時(shí)間: 2025-3-24 12:04

作者: 話    時(shí)間: 2025-3-24 18:25
Properties of Rational Singularities,Let f : X → Y be a desingularization of a normal singularity (Y, y), with Y an affine surface, E., ... , E. the irreducible components of the reduced fiber E = f.(y)., and L an invertible O.-module such that (L · E.) ≥ (ω. · E.), i = 1, ... , n. Then H.(X, L) = 0.
作者: STERN    時(shí)間: 2025-3-24 20:18
,Noether’s Formula, the Picard Scheme, the Albanese Variety, and Plurigenera,From this point on by . we mean a nonsingular projective surface . defined over an algebraically closed field k of arbitrary characteristic. When we have to deal with surfaces with singularities, we state that explicitly (for example: let . be a normal surface...).
作者: dowagers-hump    時(shí)間: 2025-3-25 00:03

作者: oxidize    時(shí)間: 2025-3-25 03:48
Morphisms from a Surface to a Curve. Elliptic and Quasielliptic Fibrations,Let .: . → . be .*: k(.) → k(.) . k(.) . k(.). Then . V ? Y ..(.) ..
作者: jungle    時(shí)間: 2025-3-25 10:20
Canonical Dimension of an Elliptic or Quasielliptic Fibration,Let .: . → . be an elliptic or quasielliptic fibration. Theorem 7.15 expresses the dualizing sheaf ω. of . in the form
作者: 外貌    時(shí)間: 2025-3-25 13:04
Ruled Surfaces. The Noether-Tsen Criterion,A surface . is a . if there exists a nonsingular projective curve . such that . is birationally isomorphic to P. × ..
作者: Mediocre    時(shí)間: 2025-3-25 16:41

作者: padding    時(shí)間: 2025-3-25 20:21
Zariski Decomposition and Applications,In this chapter we present Zariski’s theory of finite generation of the graded algebra . (., .) associated to a divisor . on a surface ., cf. [Zar1] and some more recent developments related to this theory.
作者: 灌溉    時(shí)間: 2025-3-26 02:11

作者: 浪費(fèi)時(shí)間    時(shí)間: 2025-3-26 08:06

作者: BOAST    時(shí)間: 2025-3-26 10:06
978-1-4419-3149-8Springer-Verlag New York 2001
作者: 袋鼠    時(shí)間: 2025-3-26 16:26
Murray Gerstenhaber,Samuel D. Schack let .: . → . be its canonical projection. Let . ∈ . be a closed point on the fiber .. = ..(.), . = . (.), and let .be the quadratic transformation of . with center .. Then the proper transform F′ of .. on .has ..(F′) = 0 and (F′.) = ?1, because ..(Fb) = 0 and (F..) = 0. In other words, F′ is an exc
作者: GUILE    時(shí)間: 2025-3-26 18:25
Minimal Models of Ruled Surfaces, let .: . → . be its canonical projection. Let . ∈ . be a closed point on the fiber .. = ..(.), . = . (.), and let .be the quadratic transformation of . with center .. Then the proper transform F′ of .. on .has ..(F′) = 0 and (F′.) = ?1, because ..(Fb) = 0 and (F..) = 0. In other words, F′ is an exc
作者: ovation    時(shí)間: 2025-3-26 23:09

作者: fledged    時(shí)間: 2025-3-27 03:57

作者: PALMY    時(shí)間: 2025-3-27 06:06
Minimal Models of Ruled Surfaces,eptional curve of the first kind. By (3.30), there exists a unique contraction .of F′ to a nonsingular point; we shall denote this contraction by cont .. As . is a morphism and .′ is a component of a fiber of . o π, we get a commutative diagram:
作者: 地名表    時(shí)間: 2025-3-27 13:14

作者: 褻瀆    時(shí)間: 2025-3-27 17:25

作者: Heterodoxy    時(shí)間: 2025-3-27 20:19
,Surfaces with Canonical Dimension Zero (char(k) ≠ 2, 3),
作者: Gleason-score    時(shí)間: 2025-3-28 01:46

作者: ARY    時(shí)間: 2025-3-28 03:21

作者: 后天習(xí)得    時(shí)間: 2025-3-28 06:36
5樓
作者: 翻布尋找    時(shí)間: 2025-3-28 11:19
6樓
作者: 容易懂得    時(shí)間: 2025-3-28 17:45
6樓
作者: 最高峰    時(shí)間: 2025-3-28 21:57
6樓
作者: 起皺紋    時(shí)間: 2025-3-29 03:00
6樓
作者: 可憎    時(shí)間: 2025-3-29 04:09
7樓
作者: nonradioactive    時(shí)間: 2025-3-29 07:42
7樓
作者: 叢林    時(shí)間: 2025-3-29 14:02
7樓
作者: 溫室    時(shí)間: 2025-3-29 16:01
7樓
作者: infarct    時(shí)間: 2025-3-29 19:49
8樓
作者: 殺死    時(shí)間: 2025-3-30 02:32
8樓
作者: Evolve    時(shí)間: 2025-3-30 07:08
8樓
作者: FICE    時(shí)間: 2025-3-30 11:43
8樓
作者: Asymptomatic    時(shí)間: 2025-3-30 14:48
9樓
作者: CHYME    時(shí)間: 2025-3-30 19:24
9樓
作者: Acetabulum    時(shí)間: 2025-3-30 22:23
9樓
作者: nettle    時(shí)間: 2025-3-31 00:53
10樓
作者: 黃油沒(méi)有    時(shí)間: 2025-3-31 08:12
10樓
作者: 不容置疑    時(shí)間: 2025-3-31 12:15
10樓
作者: convert    時(shí)間: 2025-3-31 16:43
10樓




歡迎光臨 派博傳思國(guó)際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
乌恰县| 天峻县| 黄大仙区| 承德县| 濉溪县| 延津县| 天峻县| 玉环县| 平陆县| 西充县| 武宁县| 毕节市| 安平县| 乌海市| 包头市| 鄂尔多斯市| 凤台县| 五常市| 和顺县| 陵水| 达日县| 台江县| 佛坪县| 荣昌县| 平武县| 甘洛县| 荔浦县| 志丹县| 昭通市| 三明市| 阿瓦提县| 宜都市| 敖汉旗| 商河县| 中卫市| 杭锦后旗| 黄梅县| 年辖:市辖区| 万源市| 郎溪县| 德昌县|