派博傳思國際中心

標題: Titlebook: Algebraic K-Theory; V. Srinivas Textbook 1996Latest edition Springer Science+Business Media New York 1996 Category theory.Dimension.Grad.K [打印本頁]

作者: BULK    時間: 2025-3-21 19:43
書目名稱Algebraic K-Theory影響因子(影響力)




書目名稱Algebraic K-Theory影響因子(影響力)學科排名




書目名稱Algebraic K-Theory網(wǎng)絡公開度




書目名稱Algebraic K-Theory網(wǎng)絡公開度學科排名




書目名稱Algebraic K-Theory被引頻次




書目名稱Algebraic K-Theory被引頻次學科排名




書目名稱Algebraic K-Theory年度引用




書目名稱Algebraic K-Theory年度引用學科排名




書目名稱Algebraic K-Theory讀者反饋




書目名稱Algebraic K-Theory讀者反饋學科排名





作者: Discrete    時間: 2025-3-21 23:17
Ravikiran Vaidya,Vishal Dhamecha% aaaa!370C!]] 作者: Criteria    時間: 2025-3-22 03:24

作者: 玷污    時間: 2025-3-22 05:43
The Classifying Space of a Small Category,% aaaa!370C!]]
作者: giggle    時間: 2025-3-22 09:31
Algebraic K-Theory978-0-8176-4739-1Series ISSN 2197-1803 Series E-ISSN 2197-1811
作者: 脆弱么    時間: 2025-3-22 16:32

作者: morale    時間: 2025-3-22 20:27
https://doi.org/10.1007/978-0-8176-4739-1Category theory; Dimension; Grad; K-theory; algebraic geometry; plus construction; topology
作者: Eosinophils    時間: 2025-3-22 23:28
978-0-8176-4736-0Springer Science+Business Media New York 1996
作者: 自由職業(yè)者    時間: 2025-3-23 01:46

作者: outrage    時間: 2025-3-23 07:07
Ravi Sundaram,Sorabh Gupta,Sanjay GuptaIf . is a ring, let P(.) denote the category of finitely generated projective (left) .-modules. This is a full subcategory of the Abelian category of left .-modules, so that P(.) is an exact category where all exact sequences are split. We will prove the following result, comparing the plus and . constructions, in Chapter 7.
作者: 執(zhí)    時間: 2025-3-23 12:36

作者: 傻瓜    時間: 2025-3-23 16:13

作者: 廢除    時間: 2025-3-23 18:46

作者: Introduction    時間: 2025-3-23 23:19

作者: 易碎    時間: 2025-3-24 06:01

作者: 內(nèi)疚    時間: 2025-3-24 09:12
Proofs of the Theorems of Chapter 4,..(.)? ..(., {0}) . 0 ∈ ..
作者: 慌張    時間: 2025-3-24 14:05
Comparison of the Plus and ,-Constructions,Let . be an Abelian monoid, i.e., . has a commutative, associative binary operation with a two-sided identity. We say that . acts on a set . if there is a homomorphism of monoids . → Hom . (X, .); if . ∈ ., the corresponding map of sets . → . is called translation by .. We say that . acts . on . if each translation is bijective.
作者: 貞潔    時間: 2025-3-24 17:41

作者: 粗俗人    時間: 2025-3-24 21:40
Localization for Singular Varieties,ove the so-called “Fundamental Theorem” (9.8), which computes ..(.[., ..]), and to relate the study of 0-cycles on normal surfaces to modules of finite length and finite projective dimension over the local rings at singular points. We begin with Quillen’s localization theorem, proved in ..
作者: 拋媚眼    時間: 2025-3-25 03:00

作者: Dysplasia    時間: 2025-3-25 06:05
Modern Birkh?user Classicshttp://image.papertrans.cn/a/image/152645.jpg
作者: FOIL    時間: 2025-3-25 07:32
Ravi Sundaram,Sorabh Gupta,Sanjay Guptaour purposes, it is only important to know that .(.) is an Eilenberg–MacLane space .(.(.)),1), i.e., .(.) is a connected space with π.(.(.)) ? .(.), π.(.(.)) = 0 for . ≥ 2, and that these properties characterize .(.) up to homotopy equivalence (since we are assuming that all spaces considered here h
作者: 共同給與    時間: 2025-3-25 15:24

作者: choroid    時間: 2025-3-25 18:24
Ravi Sundaram,Sorabh Gupta,Sanjay Gupta0 is an exact sequence in Α with .′,.″ ∈ C, then . is isomorphic to an object of C. An . in C is then defined to be an exact sequence in Α whose terms lie in C. Let . be the . of exact sequences in C. One can give an intrinsic definition of an exact category C in terms of a class . of diagrams in th
作者: Libido    時間: 2025-3-25 20:19
https://doi.org/10.1007/978-981-19-8598-0ove the so-called “Fundamental Theorem” (9.8), which computes ..(.[., ..]), and to relate the study of 0-cycles on normal surfaces to modules of finite length and finite projective dimension over the local rings at singular points. We begin with Quillen’s localization theorem, proved in ..
作者: Popcorn    時間: 2025-3-26 03:13

作者: daredevil    時間: 2025-3-26 04:39
2197-1803 standing in the reader.Discusses fundamentals and new resear.Algebraic K-Theory has become an increasingly active area of research. With its connections to algebra, algebraic geometry, topology, and number theory, it has implications for a wide variety of researchers and graduate students in mathema
作者: 獨裁政府    時間: 2025-3-26 10:09
Ravi Sundaram,Sorabh Gupta,Sanjay Gupta.(.(.)) = 0 for . ≥ 2, and that these properties characterize .(.) up to homotopy equivalence (since we are assuming that all spaces considered here have the homotopy type of a .-complex). We give a construction of the classifying space of a discrete group in the next chapter (Example (3.10)).
作者: facetious    時間: 2025-3-26 13:33

作者: 細胞    時間: 2025-3-26 17:34

作者: 吝嗇性    時間: 2025-3-26 21:43

作者: Congeal    時間: 2025-3-27 02:44

作者: 商品    時間: 2025-3-27 05:50

作者: RENIN    時間: 2025-3-27 12:36
,Exact Categories and Quillen’s ,-Construction,0 is an exact sequence in Α with .′,.″ ∈ C, then . is isomorphic to an object of C. An . in C is then defined to be an exact sequence in Α whose terms lie in C. Let . be the . of exact sequences in C. One can give an intrinsic definition of an exact category C in terms of a class . of diagrams in th
作者: Foment    時間: 2025-3-27 14:00
Localization for Singular Varieties,ove the so-called “Fundamental Theorem” (9.8), which computes ..(.[., ..]), and to relate the study of 0-cycles on normal surfaces to modules of finite length and finite projective dimension over the local rings at singular points. We begin with Quillen’s localization theorem, proved in ..
作者: arthroscopy    時間: 2025-3-27 18:34
8樓
作者: 動機    時間: 2025-3-28 01:02
8樓
作者: Type-1-Diabetes    時間: 2025-3-28 04:50
8樓
作者: Lice692    時間: 2025-3-28 08:45
9樓
作者: disparage    時間: 2025-3-28 10:45
9樓
作者: Kinetic    時間: 2025-3-28 16:00
9樓
作者: 疏忽    時間: 2025-3-28 20:53
10樓
作者: 審問,審訊    時間: 2025-3-29 02:33
10樓
作者: 恭維    時間: 2025-3-29 03:44
10樓
作者: 過濾    時間: 2025-3-29 08:43
10樓




歡迎光臨 派博傳思國際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
台中市| 泸水县| 枣庄市| 麟游县| 尚志市| 扶绥县| 裕民县| 红桥区| 罗源县| 乾安县| 三明市| 奎屯市| 都匀市| 山西省| 本溪| 隆子县| 巫溪县| 南平市| 永清县| 正宁县| 大田县| 大邑县| 桦川县| 兰州市| 南陵县| 四川省| 鹿泉市| 蓬莱市| 仙桃市| 偏关县| 潜江市| 沂水县| 酒泉市| 威宁| 铜梁县| 海淀区| 阳高县| 吐鲁番市| 依兰县| 嘉义市| 儋州市|