派博傳思國際中心

標題: Titlebook: Algebraic Geometry and Singularities; Antonio Campillo López,Luis Narváez Macarro Conference proceedings 1996 Birkh?user Verlag 1996 Algeb [打印本頁]

作者: 輕佻    時間: 2025-3-21 18:15
書目名稱Algebraic Geometry and Singularities影響因子(影響力)




書目名稱Algebraic Geometry and Singularities影響因子(影響力)學科排名




書目名稱Algebraic Geometry and Singularities網(wǎng)絡公開度




書目名稱Algebraic Geometry and Singularities網(wǎng)絡公開度學科排名




書目名稱Algebraic Geometry and Singularities被引頻次




書目名稱Algebraic Geometry and Singularities被引頻次學科排名




書目名稱Algebraic Geometry and Singularities年度引用




書目名稱Algebraic Geometry and Singularities年度引用學科排名




書目名稱Algebraic Geometry and Singularities讀者反饋




書目名稱Algebraic Geometry and Singularities讀者反饋學科排名





作者: 大喘氣    時間: 2025-3-21 22:33
Sur L’espace Des Courses Tracées Sur Une Singularitélière (., .). La question générate est d’élucider les correspondances entre les propriétés algébro-géométriques de . d’une part et les propriétés de divers modèles birationnels propres au-dessus de (., .). en particulier ses désingularisations, d’autre part.
作者: Cupidity    時間: 2025-3-22 04:06

作者: 煩擾    時間: 2025-3-22 05:47

作者: 有組織    時間: 2025-3-22 09:25
Introduction to the Algorithm of Resolution characteristic zero. There is a theorem that states that such a resolution does exist ([6]), but if we want to know how to resolve the singularities the theorem falls short for providing an algorithm.
作者: Brocas-Area    時間: 2025-3-22 15:18
Polarity with Respect to a Foliation that ., ., . are homogeneous polynomials of degree ., with no common factors and satisfying Euler’s equation . + . + . ≡ 0. In this way we have a rational map . defined on ?.Sing(.) which associates to each . the point in . corresponding to the line defined by . at ..
作者: angiography    時間: 2025-3-22 17:56

作者: LARK    時間: 2025-3-23 00:38

作者: 雕鏤    時間: 2025-3-23 03:39
On The Linearization Problem and Some Questions for Webs in ?2 survey on web geometry in ?.. The linearization problem for webs in ?. is discussed and new results are given. In particular, we characterize maximum rank webs in ?. which are linearizable. At the end of the article, we pose some questions and we show how to use basic facts of algebraic analysis (i
作者: anticipate    時間: 2025-3-23 06:42

作者: Injunction    時間: 2025-3-23 13:46

作者: ITCH    時間: 2025-3-23 15:58
Weighted Homogeneous Complete Intersectionsence of an equivariant map . : ?. → ?. such that ..(.) has an isolated singularity at .. These are somewhat complicated, but simplify if .?. = 0 or 1 or if . = 1. The former case gives conditions for (weighted) homogeneously generated ideals of finite codimension in the ring .. of germs of holomorph
作者: FLAGR    時間: 2025-3-23 20:13
https://doi.org/10.1007/978-3-0348-9020-5Algebraic topology; Blowing up; Dimension; algebraic geometry; singularity theory
作者: 親屬    時間: 2025-3-23 23:32
978-3-0348-9870-6Birkh?user Verlag 1996
作者: Rustproof    時間: 2025-3-24 04:57

作者: kidney    時間: 2025-3-24 09:44
Algebraic Geometry and Singularities978-3-0348-9020-5Series ISSN 0743-1643 Series E-ISSN 2296-505X
作者: 桶去微染    時間: 2025-3-24 13:52

作者: perjury    時間: 2025-3-24 15:01
https://doi.org/10.1007/978-3-540-35775-9convaincre le lecteur qu’il existe une construction courte et claire d’une désingularisation de .. Ce qui signifie qu’il existe une variété projective régulière .. et un morphisme projectif .: .. → . qui est un isomorphisme au-dessus de l’ouvert de régularité de ..
作者: 武器    時間: 2025-3-24 22:43
Decoherence and Quantum Computing,lière (., .). La question générate est d’élucider les correspondances entre les propriétés algébro-géométriques de . d’une part et les propriétés de divers modèles birationnels propres au-dessus de (., .). en particulier ses désingularisations, d’autre part.
作者: Small-Intestine    時間: 2025-3-25 01:21
Decoherence and Quantum Computing,irreducible components, the resolution complexity, the Puiseux pairs of the irreducible components and their intersection multiplicities. In fact, the Puiseux pairs of the irreducible components and their intersection multiplicities are enough to describe the embedding topological type of . (see [17], [9]).
作者: 清楚說話    時間: 2025-3-25 07:19
https://doi.org/10.1007/978-3-540-35775-9 characteristic zero. There is a theorem that states that such a resolution does exist ([6]), but if we want to know how to resolve the singularities the theorem falls short for providing an algorithm.
作者: 諷刺    時間: 2025-3-25 11:09
https://doi.org/10.1007/978-3-540-35775-9 that ., ., . are homogeneous polynomials of degree ., with no common factors and satisfying Euler’s equation . + . + . ≡ 0. In this way we have a rational map . defined on ?.Sing(.) which associates to each . the point in . corresponding to the line defined by . at ..
作者: 文字    時間: 2025-3-25 14:43
https://doi.org/10.1007/978-3-540-35775-9convaincre le lecteur qu’il existe une construction courte et claire d’une désingularisation de .. Ce qui signifie qu’il existe une variété projective régulière .. et un morphisme projectif .: .. → . qui est un isomorphisme au-dessus de l’ouvert de régularité de ..
作者: entrance    時間: 2025-3-25 19:07

作者: 棲息地    時間: 2025-3-25 20:05
Decoherence and Quantum Computing,aka [2] proved in 1964 that every algebraic variety over a field of characteristic zero admits a resolution of singularities which is obtained by successive blowing ups of certain regular centers. Moreover, he proves the stronger version of embedded resolution of singularities, i.e., for every (sing
作者: Diastole    時間: 2025-3-26 02:20
Decoherence and Quantum Computing,irreducible components, the resolution complexity, the Puiseux pairs of the irreducible components and their intersection multiplicities. In fact, the Puiseux pairs of the irreducible components and their intersection multiplicities are enough to describe the embedding topological type of . (see [17
作者: Customary    時間: 2025-3-26 05:44

作者: 工作    時間: 2025-3-26 08:58
https://doi.org/10.1007/978-3-540-35775-9 that ., ., . are homogeneous polynomials of degree ., with no common factors and satisfying Euler’s equation . + . + . ≡ 0. In this way we have a rational map . defined on ?.Sing(.) which associates to each . the point in . corresponding to the line defined by . at ..
作者: anticipate    時間: 2025-3-26 15:27
Decoherence and Quantum Computing,neous polynomial defining an isolated singularity, and deg .. < deg ... We assume that ..,…,.. are positive integers and let deg always denote the weighted degree, i.e., deg .. = ..α. +?+ ..α. for a monomial .. For an arbitrary power series ., deg . denotes the smallest weighted degree of a monomial
作者: 注射器    時間: 2025-3-26 19:40
The Varieties of Master Equationsy. In constructible geometry we apply the Grassmann blowing-up to rephrase the proof of the Henry-Merle Proposition [3, Proposition 1] (cf. section 4). This proposition plays an important role in the theory of polar varieties [3], [4]. After that (cf. section 5) we give a certain description of Whit
作者: insurgent    時間: 2025-3-27 00:43

作者: 沙文主義    時間: 2025-3-27 02:42

作者: EPT    時間: 2025-3-27 06:12
Patrick Oloko,Michaela Ott,Clarissa Vierkeperturbations of the ..-codimension 1 singularities of mappings ?. → ?.. It is known (see [12], [17]) that the image of the complex mapping is homotopy equivalent to a 2-sphere: and Goryunov’s real pictures showed a real image with the same homotopy type. Goryunov was able to demonstrate, by element
作者: esthetician    時間: 2025-3-27 11:53
https://doi.org/10.1007/978-3-662-66222-9ence of an equivariant map . : ?. → ?. such that ..(.) has an isolated singularity at .. These are somewhat complicated, but simplify if .?. = 0 or 1 or if . = 1. The former case gives conditions for (weighted) homogeneously generated ideals of finite codimension in the ring .. of germs of holomorph
作者: Pantry    時間: 2025-3-27 13:56

作者: 無關緊要    時間: 2025-3-27 20:06

作者: 萬靈丹    時間: 2025-3-28 00:52

作者: 夾死提手勢    時間: 2025-3-28 06:04

作者: Lacerate    時間: 2025-3-28 09:34
On a Newton Polygon Approach to the Uniformization of Singularities of Characteristic ,This paper is a report about some results of uniformization of singularities in characteristic . under the guidance of Prof H. Hironaka.
作者: dragon    時間: 2025-3-28 11:51
Caractérisation géométrique de l’existence du polyn?me de Bernstein relatifDans cet exposé, nous nous proposons de discuter de l’existencc du polyn?me de Bernstein relatif pour une famille de fonctions holomorphes, et de donner un critère géométrique de cette existence.
作者: Somber    時間: 2025-3-28 18:37

作者: 史前    時間: 2025-3-28 22:38

作者: 有角    時間: 2025-3-28 23:12

作者: 青春期    時間: 2025-3-29 05:53
Sur L’espace Des Courses Tracées Sur Une Singularitélière (., .). La question générate est d’élucider les correspondances entre les propriétés algébro-géométriques de . d’une part et les propriétés de divers modèles birationnels propres au-dessus de (., .). en particulier ses désingularisations, d’autre part.
作者: biopsy    時間: 2025-3-29 08:11

作者: 現(xiàn)代    時間: 2025-3-29 11:49

作者: 創(chuàng)作    時間: 2025-3-29 15:40

作者: 不遵守    時間: 2025-3-29 22:15

作者: 發(fā)酵劑    時間: 2025-3-30 01:15
Patrick Oloko,Michaela Ott,Clarissa Vierkerities. The pictures in Figure 1.1 show stable perturbations of I: .. (birth of two cross-caps): II: Tangential contact of two immersed sheets; III: Cross-cap + immersed sheet; IV: Birth of two triple-points: and V: Quadruple point.
作者: critique    時間: 2025-3-30 05:44

作者: Nmda-Receptor    時間: 2025-3-30 09:25
How good are real pictures?rities. The pictures in Figure 1.1 show stable perturbations of I: .. (birth of two cross-caps): II: Tangential contact of two immersed sheets; III: Cross-cap + immersed sheet; IV: Birth of two triple-points: and V: Quadruple point.
作者: 廢止    時間: 2025-3-30 16:00
The Varieties of Master Equations. This proposition plays an important role in the theory of polar varieties [3], [4]. After that (cf. section 5) we give a certain description of Whitney stratifications of constructible sets. Basic facts from the theory of analytically constructible sets are given in section 3 following the elementary approach of S. Lojasiewicz [6].




歡迎光臨 派博傳思國際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
三明市| 子长县| 永州市| 武鸣县| 星座| 汽车| 明水县| 新龙县| 淅川县| 万宁市| 大悟县| 皮山县| 齐齐哈尔市| 屏东市| 莱州市| 集贤县| 台北市| 肇源县| 新和县| 湘潭县| 莆田市| 额济纳旗| 仪征市| 司法| 南溪县| 平原县| 金塔县| 汉川市| 河北省| 江川县| 望奎县| 驻马店市| 桃源县| 大同市| 高要市| 阳东县| 治县。| 沾益县| 都匀市| 白朗县| 新竹县|