派博傳思國際中心

標(biāo)題: Titlebook: Algebra IX; Finite Groups of Lie A. I. Kostrikin,I. R. Shafarevich Book 1996 Springer-Verlag Berlin Heidelberg 1996 Algebra.Brauer group.Br [打印本頁]

作者: Filament    時(shí)間: 2025-3-21 19:40
書目名稱Algebra IX影響因子(影響力)




書目名稱Algebra IX影響因子(影響力)學(xué)科排名




書目名稱Algebra IX網(wǎng)絡(luò)公開度




書目名稱Algebra IX網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Algebra IX被引頻次




書目名稱Algebra IX被引頻次學(xué)科排名




書目名稱Algebra IX年度引用




書目名稱Algebra IX年度引用學(xué)科排名




書目名稱Algebra IX讀者反饋




書目名稱Algebra IX讀者反饋學(xué)科排名





作者: 表兩個(gè)    時(shí)間: 2025-3-21 22:48

作者: 節(jié)約    時(shí)間: 2025-3-22 01:34

作者: NIB    時(shí)間: 2025-3-22 05:48
On the Representation Theory of the Finite Groups of Lie Type over an Algebraically Closed Field ofclass of groups we recall the classification of the finite simple groups. In 1981 it was finally proved, after intensive effort by many workers over several decades, that every finite simple group must be one of the following:.The finite groups of Lie type are analogues over a finite field of the simple Lie groups over ? or ?.
作者: licence    時(shí)間: 2025-3-22 12:38

作者: dysphagia    時(shí)間: 2025-3-22 15:58

作者: Liberate    時(shí)間: 2025-3-22 19:50
978-3-642-08167-5Springer-Verlag Berlin Heidelberg 1996
作者: oracle    時(shí)間: 2025-3-22 22:48
Algebra IX978-3-662-03235-0Series ISSN 0938-0396
作者: ellagic-acid    時(shí)間: 2025-3-23 03:16
Wissensverarbeitung und Expertensystemeclass of groups we recall the classification of the finite simple groups. In 1981 it was finally proved, after intensive effort by many workers over several decades, that every finite simple group must be one of the following:.The finite groups of Lie type are analogues over a finite field of the simple Lie groups over ? or ?.
作者: cartilage    時(shí)間: 2025-3-23 08:36

作者: lymphedema    時(shí)間: 2025-3-23 12:59
Finite-Dimensional Division Algebras,real quaternions, which rapidly led to diverse applications in physics and mechanics. However, further extension of our knowledge of finite-dimensional division algebras was delayed, and even acquired a somewhat dramatic character. Thus, after the origin and study of the real quaternions there follo
作者: Hormones    時(shí)間: 2025-3-23 14:51
Book 1996basic information Carter describes the Deligne-Lusztig method of obtaining characters of these groups using l-adic cohomology and subsequent work of Lusztig..The second part by Platonov and Yanchevskii surveys the structure of finite-dimensional division algebras and includes an account of reduced K
作者: 確認(rèn)    時(shí)間: 2025-3-23 19:44

作者: 觀點(diǎn)    時(shí)間: 2025-3-24 02:01

作者: 編輯才信任    時(shí)間: 2025-3-24 06:11
Finite-Dimensional Division Algebras,wed a long period (until the beginning of the present century), during which no other finite-dimensional division algebras were discovered. We only remark that in 1880 Frobenius proved that over the field of real numbers there exists no non-commutative division algebra apart from Hamilton’s quaternions.
作者: 清晰    時(shí)間: 2025-3-24 08:11

作者: 指數(shù)    時(shí)間: 2025-3-24 10:59
5樓
作者: 倔強(qiáng)不能    時(shí)間: 2025-3-24 17:49
6樓
作者: Perennial長期的    時(shí)間: 2025-3-24 21:28
6樓
作者: RACE    時(shí)間: 2025-3-25 02:17
6樓
作者: amphibian    時(shí)間: 2025-3-25 05:08
6樓
作者: Excise    時(shí)間: 2025-3-25 10:18
7樓
作者: 滔滔不絕的人    時(shí)間: 2025-3-25 14:54
7樓
作者: 消瘦    時(shí)間: 2025-3-25 19:19
7樓
作者: debacle    時(shí)間: 2025-3-25 23:25
7樓
作者: 遍及    時(shí)間: 2025-3-26 01:42
8樓
作者: Organization    時(shí)間: 2025-3-26 07:08
8樓
作者: Organization    時(shí)間: 2025-3-26 08:39
8樓
作者: Alopecia-Areata    時(shí)間: 2025-3-26 14:38
8樓
作者: averse    時(shí)間: 2025-3-26 19:53
9樓
作者: Amorous    時(shí)間: 2025-3-26 23:54
9樓
作者: 阻塞    時(shí)間: 2025-3-27 03:45
9樓
作者: inclusive    時(shí)間: 2025-3-27 09:15
10樓
作者: Myocyte    時(shí)間: 2025-3-27 11:44
10樓
作者: 發(fā)出眩目光芒    時(shí)間: 2025-3-27 16:23
10樓
作者: Hypopnea    時(shí)間: 2025-3-27 18:41
10樓




歡迎光臨 派博傳思國際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
阿巴嘎旗| 永济市| 阜宁县| 仁寿县| 宣城市| 天峻县| 安阳市| 广州市| 大安市| 大足县| 成武县| 汾西县| 博白县| 龙江县| 拉萨市| 奉新县| 安平县| 莱州市| 大足县| 乳源| 溧水县| 祁阳县| 盐源县| 任丘市| 佳木斯市| 得荣县| 太保市| 牙克石市| 宁德市| 中方县| 冕宁县| 宣汉县| 林芝县| 花莲县| 彭山县| 江安县| 富顺县| 北碚区| 琼海市| 贵港市| 武穴市|