派博傳思國際中心

標(biāo)題: Titlebook: Algebra IX; Finite Groups of Lie A. I. Kostrikin,I. R. Shafarevich Book 1996 Springer-Verlag Berlin Heidelberg 1996 Algebra.Brauer group.Br [打印本頁]

作者: Filament    時(shí)間: 2025-3-21 19:40
書目名稱Algebra IX影響因子(影響力)




書目名稱Algebra IX影響因子(影響力)學(xué)科排名




書目名稱Algebra IX網(wǎng)絡(luò)公開度




書目名稱Algebra IX網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Algebra IX被引頻次




書目名稱Algebra IX被引頻次學(xué)科排名




書目名稱Algebra IX年度引用




書目名稱Algebra IX年度引用學(xué)科排名




書目名稱Algebra IX讀者反饋




書目名稱Algebra IX讀者反饋學(xué)科排名





作者: 表兩個(gè)    時(shí)間: 2025-3-21 22:48

作者: 節(jié)約    時(shí)間: 2025-3-22 01:34

作者: NIB    時(shí)間: 2025-3-22 05:48
On the Representation Theory of the Finite Groups of Lie Type over an Algebraically Closed Field ofclass of groups we recall the classification of the finite simple groups. In 1981 it was finally proved, after intensive effort by many workers over several decades, that every finite simple group must be one of the following:.The finite groups of Lie type are analogues over a finite field of the simple Lie groups over ? or ?.
作者: licence    時(shí)間: 2025-3-22 12:38

作者: dysphagia    時(shí)間: 2025-3-22 15:58

作者: Liberate    時(shí)間: 2025-3-22 19:50
978-3-642-08167-5Springer-Verlag Berlin Heidelberg 1996
作者: oracle    時(shí)間: 2025-3-22 22:48
Algebra IX978-3-662-03235-0Series ISSN 0938-0396
作者: ellagic-acid    時(shí)間: 2025-3-23 03:16
Wissensverarbeitung und Expertensystemeclass of groups we recall the classification of the finite simple groups. In 1981 it was finally proved, after intensive effort by many workers over several decades, that every finite simple group must be one of the following:.The finite groups of Lie type are analogues over a finite field of the simple Lie groups over ? or ?.
作者: cartilage    時(shí)間: 2025-3-23 08:36

作者: lymphedema    時(shí)間: 2025-3-23 12:59
Finite-Dimensional Division Algebras,real quaternions, which rapidly led to diverse applications in physics and mechanics. However, further extension of our knowledge of finite-dimensional division algebras was delayed, and even acquired a somewhat dramatic character. Thus, after the origin and study of the real quaternions there follo
作者: Hormones    時(shí)間: 2025-3-23 14:51
Book 1996basic information Carter describes the Deligne-Lusztig method of obtaining characters of these groups using l-adic cohomology and subsequent work of Lusztig..The second part by Platonov and Yanchevskii surveys the structure of finite-dimensional division algebras and includes an account of reduced K
作者: 確認(rèn)    時(shí)間: 2025-3-23 19:44

作者: 觀點(diǎn)    時(shí)間: 2025-3-24 02:01

作者: 編輯才信任    時(shí)間: 2025-3-24 06:11
Finite-Dimensional Division Algebras,wed a long period (until the beginning of the present century), during which no other finite-dimensional division algebras were discovered. We only remark that in 1880 Frobenius proved that over the field of real numbers there exists no non-commutative division algebra apart from Hamilton’s quaternions.
作者: 清晰    時(shí)間: 2025-3-24 08:11

作者: 指數(shù)    時(shí)間: 2025-3-24 10:59
5樓
作者: 倔強(qiáng)不能    時(shí)間: 2025-3-24 17:49
6樓
作者: Perennial長期的    時(shí)間: 2025-3-24 21:28
6樓
作者: RACE    時(shí)間: 2025-3-25 02:17
6樓
作者: amphibian    時(shí)間: 2025-3-25 05:08
6樓
作者: Excise    時(shí)間: 2025-3-25 10:18
7樓
作者: 滔滔不絕的人    時(shí)間: 2025-3-25 14:54
7樓
作者: 消瘦    時(shí)間: 2025-3-25 19:19
7樓
作者: debacle    時(shí)間: 2025-3-25 23:25
7樓
作者: 遍及    時(shí)間: 2025-3-26 01:42
8樓
作者: Organization    時(shí)間: 2025-3-26 07:08
8樓
作者: Organization    時(shí)間: 2025-3-26 08:39
8樓
作者: Alopecia-Areata    時(shí)間: 2025-3-26 14:38
8樓
作者: averse    時(shí)間: 2025-3-26 19:53
9樓
作者: Amorous    時(shí)間: 2025-3-26 23:54
9樓
作者: 阻塞    時(shí)間: 2025-3-27 03:45
9樓
作者: inclusive    時(shí)間: 2025-3-27 09:15
10樓
作者: Myocyte    時(shí)間: 2025-3-27 11:44
10樓
作者: 發(fā)出眩目光芒    時(shí)間: 2025-3-27 16:23
10樓
作者: Hypopnea    時(shí)間: 2025-3-27 18:41
10樓




歡迎光臨 派博傳思國際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
张北县| 郧西县| 阳高县| 赫章县| 九江县| 新晃| 邵武市| 高雄市| 平阳县| 巫溪县| 广平县| 诸暨市| 海阳市| 红河县| 兴海县| 昆山市| 常熟市| 北川| 南木林县| 崇信县| 屯昌县| 周口市| 罗山县| 阜南县| 科尔| 罗山县| 专栏| 宜州市| 七台河市| 彩票| 遵义市| 莲花县| 武宣县| 晋宁县| 玉山县| 金塔县| 维西| 缙云县| 清丰县| 遵义市| 景洪市|