標(biāo)題: Titlebook: Algebra I; Textbook for Student Alexey L. Gorodentsev Textbook 2016 Springer International Publishing AG 2016 Fields.Rings.Modules.Groups.L [打印本頁] 作者: 大口水罐 時(shí)間: 2025-3-21 19:00
書目名稱Algebra I影響因子(影響力)
書目名稱Algebra I影響因子(影響力)學(xué)科排名
書目名稱Algebra I網(wǎng)絡(luò)公開度
書目名稱Algebra I網(wǎng)絡(luò)公開度學(xué)科排名
書目名稱Algebra I被引頻次
書目名稱Algebra I被引頻次學(xué)科排名
書目名稱Algebra I年度引用
書目名稱Algebra I年度引用學(xué)科排名
書目名稱Algebra I讀者反饋
書目名稱Algebra I讀者反饋學(xué)科排名
作者: 生氣的邊緣 時(shí)間: 2025-3-21 21:06 作者: 把手 時(shí)間: 2025-3-22 01:41
Die Unwiderrufbarkeit der Einwilligung .. We have seen in Sect.?. on p.?136 that every linear map is uniquely determined by its values on an arbitrarily chosen basis. In particular, every covector .?∈?.. is uniquely determined by numbers . as . runs trough some basis of .. The next lemma is a particular case of Proposition?. on p.?137. 作者: myriad 時(shí)間: 2025-3-22 05:00
Das Schutzbedürfnis des Individuumsboth the left multiplication map ..:?.?→?., . ? ., and the right multiplication map ..:?.?→?., . ? ., are linear. This means that multiplication of vectors by constants commutes with the algebra multiplication: (.).?=?.(.)?=?.(.) for all . and .,?.?∈?., and the standard distributive law holds for ad作者: discord 時(shí)間: 2025-3-22 10:21 作者: GLIDE 時(shí)間: 2025-3-22 13:58
TEMEX und das allgemeine Recht,., called the . of .. By definition, points of . are 1-dimensional vector subspaces in ., or equivalently, lines in . passing through the origin. To observe such points as usual “dots,” we have to use a screen, that is, an .-dimensional affine hyperplane in . that does not pass through the origin (s作者: 半身雕像 時(shí)間: 2025-3-22 19:26 作者: Mundane 時(shí)間: 2025-3-23 01:09 作者: SHRIK 時(shí)間: 2025-3-23 04:19
https://doi.org/10.1007/978-3-658-37268-2resulting vector space over . is denoted by . and called the . of the complex vector space .. For every basis ..,?..,?.,?.. of . over ., the vectors ..,?..,?.,?..,?..,?..,?.,?.. form a basis of . over ., because for every .?∈?., the uniqueness of the expansion . is equivalent to the uniqueness of th作者: Barrister 時(shí)間: 2025-3-23 09:17
Datenschutz bei Wearable Computingvector .?∈?. with a ... Since . the Hermitian inner product is uniquely recovered from the norm function and the multiplication-by-. operator as . Note that this agrees with the general ideology of K?hler triples from Sect.?. on p.?471.作者: 諄諄教誨 時(shí)間: 2025-3-23 12:21
https://doi.org/10.1007/978-3-319-45285-2Fields; Rings; Modules; Groups; Linear Algebra; Multilinear Algebra; Representation Theory; Commutative Alg作者: faucet 時(shí)間: 2025-3-23 16:06
978-3-319-83257-9Springer International Publishing AG 2016作者: 富饒 時(shí)間: 2025-3-23 21:08
Formalisierung des Systemrechts,In this chapter, . will denote an arbitrary commutative ring with unit and . an arbitrary field.作者: 相同 時(shí)間: 2025-3-24 00:40 作者: 導(dǎo)師 時(shí)間: 2025-3-24 03:31 作者: Congestion 時(shí)間: 2025-3-24 08:13 作者: Oration 時(shí)間: 2025-3-24 11:24 作者: Excise 時(shí)間: 2025-3-24 17:37 作者: Lime石灰 時(shí)間: 2025-3-24 21:26 作者: BROOK 時(shí)間: 2025-3-25 01:24
https://doi.org/10.1007/978-3-658-37268-2In this section we assume by default that ..作者: hidebound 時(shí)間: 2025-3-25 06:25
https://doi.org/10.1007/978-3-658-37268-2Throughout this chapter, we assume that ..作者: SLING 時(shí)間: 2025-3-25 11:04 作者: avarice 時(shí)間: 2025-3-25 12:32 作者: 漫步 時(shí)間: 2025-3-25 18:00
Ideals, Quotient Rings, and Factorization,In this section we continue to use the notation of Chaps.?. and?4 and write . for an arbitrary commutative ring with unit and . for an arbitrary field.作者: 癡呆 時(shí)間: 2025-3-25 21:34 作者: Neutropenia 時(shí)間: 2025-3-26 02:54
Determinants,Let . be a vector space of dimension . over a field .. We are going to define the . of a parallelepiped whose edges from some base vertex are . vectors ..,?..,?.,?.. as in Fig.?..作者: 柔美流暢 時(shí)間: 2025-3-26 05:09 作者: ECG769 時(shí)間: 2025-3-26 10:10
Modules over a Principal Ideal Domain,In this chapter, . by default means an arbitrary commutative ring with unit and . means an arbitrary field. A .-. always means a unital module over ..作者: triptans 時(shí)間: 2025-3-26 15:27
Bilinear Forms,In this section we assume by default that ..作者: DEAWL 時(shí)間: 2025-3-26 19:34
Quadratic Forms and Quadrics,Throughout this chapter, we assume that ..作者: amygdala 時(shí)間: 2025-3-26 22:37
Integers and Residues,d . respectively. Informally speaking, a . is a numeric domain whose elements can be added, subtracted, multiplied, and divided by the same rules that apply to rational numbers. The precise definition given below takes these rules as axioms.作者: Costume 時(shí)間: 2025-3-27 03:42 作者: Orgasm 時(shí)間: 2025-3-27 07:58 作者: 過多 時(shí)間: 2025-3-27 13:18
Linear Operators, just an . over .. Given two spaces with operators (..,?..) and (..,?..), a linear map .:?..?→?.. is called a . of spaces with operators if .. ° .?=?. ° .., or equivalently, if the diagram of linear maps作者: circuit 時(shí)間: 2025-3-27 14:00
Hermitian Spaces,vector .?∈?. with a ... Since . the Hermitian inner product is uniquely recovered from the norm function and the multiplication-by-. operator as . Note that this agrees with the general ideology of K?hler triples from Sect.?. on p.?471.作者: 含糊其辭 時(shí)間: 2025-3-27 17:55
https://doi.org/10.1007/978-3-322-93610-3d . respectively. Informally speaking, a . is a numeric domain whose elements can be added, subtracted, multiplied, and divided by the same rules that apply to rational numbers. The precise definition given below takes these rules as axioms.作者: Arboreal 時(shí)間: 2025-3-27 23:56 作者: Handedness 時(shí)間: 2025-3-28 03:19 作者: Kaleidoscope 時(shí)間: 2025-3-28 07:42
https://doi.org/10.1007/978-3-658-37268-2 just an . over .. Given two spaces with operators (..,?..) and (..,?..), a linear map .:?..?→?.. is called a . of spaces with operators if .. ° .?=?. ° .., or equivalently, if the diagram of linear maps作者: mechanical 時(shí)間: 2025-3-28 10:26
Datenschutz bei Wearable Computingvector .?∈?. with a ... Since . the Hermitian inner product is uniquely recovered from the norm function and the multiplication-by-. operator as . Note that this agrees with the general ideology of K?hler triples from Sect.?. on p.?471.作者: 籠子 時(shí)間: 2025-3-28 16:19
Alexey L. GorodentsevChallenging amount of material thoughtfully organized for deep and fast learning.Large collection of exercises equipped with hints and a lot of problems for independent solution.Simple modern explanat作者: 別炫耀 時(shí)間: 2025-3-28 20:13 作者: Acclaim 時(shí)間: 2025-3-29 00:15 作者: 竊喜 時(shí)間: 2025-3-29 07:02
Die Unwiderrufbarkeit der Einwilligungcovector .?∈?.. is uniquely determined by numbers . as . runs trough some basis of .. The next lemma is a particular case of Proposition?. on p.?137. However, we rewrite it here once more in notation that does not assume the finite-dimensionality of ..作者: 龍蝦 時(shí)間: 2025-3-29 09:12
https://doi.org/10.1007/978-3-658-37268-2g any number of copies of .. or ... (or both) at the beginning, or at the end, or between any two sequential letters. By definition, the elements of the free group .. are the equivalence classes of words with respect to this equivalence. The composition is the concatenation of words: ..作者: 迷住 時(shí)間: 2025-3-29 12:31 作者: 思考 時(shí)間: 2025-3-29 17:17 作者: 法律的瑕疵 時(shí)間: 2025-3-29 23:05 作者: 陶瓷 時(shí)間: 2025-3-30 01:08 作者: 落葉劑 時(shí)間: 2025-3-30 06:29 作者: ACRID 時(shí)間: 2025-3-30 09:58 作者: FATAL 時(shí)間: 2025-3-30 13:08 作者: 卡死偷電 時(shí)間: 2025-3-30 18:35 作者: Frequency-Range 時(shí)間: 2025-3-30 23:36 作者: Detoxification 時(shí)間: 2025-3-31 04:34 作者: CRASS 時(shí)間: 2025-3-31 06:36
Duality, .. We have seen in Sect.?. on p.?136 that every linear map is uniquely determined by its values on an arbitrarily chosen basis. In particular, every covector .?∈?.. is uniquely determined by numbers . as . runs trough some basis of .. The next lemma is a particular case of Proposition?. on p.?137. 作者: Optometrist 時(shí)間: 2025-3-31 12:46 作者: surrogate 時(shí)間: 2025-3-31 15:24
Euclidean Spaces,=?(.,?.) for all .,?.?∈?., (.,?.)?>?0 for all . ≠ 0, and . for all . and all ..,?..,?..,?..?∈?.. The first condition is called ., the second, ., and the third, .. A real vector space . equipped with an inner product is called a . vector space. An inner product on a Euclidean space is also called a .作者: 得罪人 時(shí)間: 2025-3-31 20:12 作者: Cabinet 時(shí)間: 2025-4-1 00:07 作者: 窒息 時(shí)間: 2025-4-1 03:16 作者: Addictive 時(shí)間: 2025-4-1 06:36
Real Versus Complex,resulting vector space over . is denoted by . and called the . of the complex vector space .. For every basis ..,?..,?.,?.. of . over ., the vectors ..,?..,?.,?..,?..,?..,?.,?.. form a basis of . over ., because for every .?∈?., the uniqueness of the expansion . is equivalent to the uniqueness of th作者: 放氣 時(shí)間: 2025-4-1 14:00
Hermitian Spaces,vector .?∈?. with a ... Since . the Hermitian inner product is uniquely recovered from the norm function and the multiplication-by-. operator as . Note that this agrees with the general ideology of K?hler triples from Sect.?. on p.?471.