標題: Titlebook: Advances in Knowledge Discovery and Data Mining; 21st Pacific-Asia Co Jinho Kim,Kyuseok Shim,Yang-Sae Moon Conference proceedings 2017 Spri [打印本頁] 作者: 傷害 時間: 2025-3-21 16:54
書目名稱Advances in Knowledge Discovery and Data Mining影響因子(影響力)
書目名稱Advances in Knowledge Discovery and Data Mining影響因子(影響力)學(xué)科排名
書目名稱Advances in Knowledge Discovery and Data Mining網(wǎng)絡(luò)公開度
書目名稱Advances in Knowledge Discovery and Data Mining網(wǎng)絡(luò)公開度學(xué)科排名
書目名稱Advances in Knowledge Discovery and Data Mining被引頻次
書目名稱Advances in Knowledge Discovery and Data Mining被引頻次學(xué)科排名
書目名稱Advances in Knowledge Discovery and Data Mining年度引用
書目名稱Advances in Knowledge Discovery and Data Mining年度引用學(xué)科排名
書目名稱Advances in Knowledge Discovery and Data Mining讀者反饋
書目名稱Advances in Knowledge Discovery and Data Mining讀者反饋學(xué)科排名
作者: Postulate 時間: 2025-3-21 20:24
rtprozentig, so w?re man dem Wunsch von Carl Zimmerer, dem dieser Beitrag posthum gewidmet ist, n?mlich dem Wunsch nach ?Bilanzwahrheit“. nahe. Allerdings lassen auch die gesetzlichen Vorschriften zum Jahresabschluss und Lagebericht viele M?glichkeiten, Informationspolitik in Gesch?ftsberichten zu t作者: 斜坡 時間: 2025-3-22 01:02 作者: 大暴雨 時間: 2025-3-22 05:44
Advanced Computation of Sparse Precision Matrices for Big Data warum sind sie oft von so viel gr??erer Wirkm?chtigkeit als all unser Wissen?.Hier werden diese Fundamentalprobleme systematisch und zusammenh?ngend behandelt. Das Werk zeigt nachdenklich Suchenden Wege durch den Wertedschungel. Es weist die praktisch T?tigen in Psychologie, P?dagogik, ?konomie, So作者: 氣候 時間: 2025-3-22 09:41 作者: Legend 時間: 2025-3-22 14:57
Effective Multiclass Transfer for Hypothesis Transfer Learning in der Literatur zu schlie?en. Da? anders als bei Ak- tienoptionen zwei Zinss?tze als Determinanten zu beachten sind, macht die konsequenten Arbitrageüberlegungen, die zu den Wertgrenzen von Devisenoptionen führen, besonders reiz- voll. Fong weist in seinen Berechnungen des Wertes von Devi- senoptionen für e978-3-8244-0307-3978-3-322-99362-5作者: pacific 時間: 2025-3-22 17:45 作者: patriot 時間: 2025-3-23 00:27
mHUIMiner: A Fast High Utility Itemset Mining Algorithm for Sparse Datasetsng-Forschung zu.. Gerade auch für Dienstleistungsunternehmen, zu denen hier auch die Versicherungsunternehmen gez?hlt werden., ist die Marketing-Forschung von besonderer Relevanz. Aufgrund der Integration externer Faktoren. und eingeschr?nkter Prüfungsm?glichkeiten der Produktqualit?t im voraus durc作者: accrete 時間: 2025-3-23 04:33 作者: 客觀 時間: 2025-3-23 05:35 作者: Provenance 時間: 2025-3-23 11:10 作者: 自戀 時間: 2025-3-23 16:12 作者: 離開可分裂 時間: 2025-3-23 21:13 作者: 交響樂 時間: 2025-3-24 01:54 作者: HEAVY 時間: 2025-3-24 06:11
Chikoti M. Wheat MD,Ginette A. Okoye MDS and PageRank is adapted to compute user authority and location significance. Moreover, user authorities are used to weight users’ implicit feedback. Experimental results on two real world data sets show that our proposed approach outperforms the state-of-the-art POI recommendation algorithms.作者: Incisor 時間: 2025-3-24 07:35 作者: Minuet 時間: 2025-3-24 12:24 作者: Subdue 時間: 2025-3-24 16:57 作者: Badger 時間: 2025-3-24 20:28 作者: endoscopy 時間: 2025-3-25 01:05 作者: Nebulous 時間: 2025-3-25 05:30 作者: 替代品 時間: 2025-3-25 09:11
Modeling Information Sharing Behavior on Q&A Forums978-3-658-19747-6作者: 螢火蟲 時間: 2025-3-25 15:12 作者: 松緊帶 時間: 2025-3-25 16:04
Contrast Pattern Based Collaborative Behavior Recommendation for Life Improvement978-3-531-93026-8作者: discord 時間: 2025-3-25 22:19 作者: 滑稽 時間: 2025-3-26 01:45
A Performance Evaluation Model for Taxi Cruising Path Recommendation System978-3-648-17338-1作者: 報復(fù) 時間: 2025-3-26 07:16
MaP2R: A Personalized Maximum Probability Route Recommendation Method Using GPS Trajectories978-3-322-99193-5作者: 原始 時間: 2025-3-26 09:49
Conference proceedings 2017e Discovery and Data Mining, PAKDD 2017, held in Jeju, South Korea, in May 2017. .The 129 full papers were carefully reviewed and selected from 458 submissions. They are organized in topical sections named: classification and deep learning; social network and graph mining; privacy-preserving mining 作者: 偉大 時間: 2025-3-26 14:06
Conference proceedings 2017ext and opinion mining; clustering and matrix factorization; dynamic, stream data mining; novel models and algorithms; behavioral data mining; graph clustering and community detection; dimensionality reduction..作者: convulsion 時間: 2025-3-26 18:50 作者: 令人悲傷 時間: 2025-3-26 23:13
Michelle E. Oboite MD,Porcia B. Love MD emotional states by placing the problem into the nearest neighborhood collaborative filtering framework. A real dataset of people with heart disease or diabetes is used in our recommendation system. The experiments conducted show that the proposed method can be effective in the health-care domain.作者: 最有利 時間: 2025-3-27 01:22 作者: 浮雕 時間: 2025-3-27 08:43 作者: 注意力集中 時間: 2025-3-27 12:08
Jennifer M. Pugh BS,Porcia B. Love MDreal clusters. Then we expand the initial clusters based on two density based clustering algorithms to generate clusters of arbitrary shapes. In experiments on various datasets our algorithm outperforms the original dominant sets algorithm and several other algorithms. It is also shown to be effective in image segmentation experiments.作者: PARA 時間: 2025-3-27 17:11
Turhan Kahraman,Asiye T. Ozdogared signed networks and compare with four baselines including a matrix factorization method and three state-of-the-art unsigned network embedding models. The experimental results demonstrate the effectiveness of our signed network embedding.作者: Etching 時間: 2025-3-27 20:32
0302-9743 ereed proceedings of the 21st Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, PAKDD 2017, held in Jeju, South Korea, in May 2017. .The 129 full papers were carefully reviewed and selected from 458 submissions. They are organized in topical sections named: classification a作者: 混合 時間: 2025-3-28 01:26 作者: WITH 時間: 2025-3-28 03:21
Clinical Cases in Sleep Physical Therapyeriments have been done to compare mHUIMiner to other state-of-the-art algorithms. The experimental results show that our technique outperforms the state-of-the-art algorithms in terms of running time for sparse datasets.作者: 抵消 時間: 2025-3-28 08:14
Jinho Kim,Kyuseok Shim,Yang-Sae MoonIncludes supplementary material: .Includes supplementary material: 作者: Arbitrary 時間: 2025-3-28 14:02
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/a/image/148615.jpg作者: 有節(jié)制 時間: 2025-3-28 16:33 作者: BRIDE 時間: 2025-3-28 20:43
978-3-319-57528-5Springer International Publishing AG 2017作者: preeclampsia 時間: 2025-3-29 02:18
Advances in Knowledge Discovery and Data Mining978-3-319-57529-2Series ISSN 0302-9743 Series E-ISSN 1611-3349 作者: JOT 時間: 2025-3-29 03:06 作者: Guaff豪情痛飲 時間: 2025-3-29 10:58 作者: 聰明 時間: 2025-3-29 11:39
Lisa M. Diaz DO,Robert A. Norman DO, MPHn many fields of sciences, engineering, humanities and machine learning problems in general. Recent applications often encounter high dimensionality with a limited number of data points leading to a number of covariance parameters that greatly exceeds the number of observations, and hence the singul作者: dysphagia 時間: 2025-3-29 18:28 作者: Asseverate 時間: 2025-3-29 21:02 作者: 保留 時間: 2025-3-30 03:26 作者: 音樂學(xué)者 時間: 2025-3-30 04:22
Jennifer M. Pugh BS,Porcia B. Love MDity of clustering algorithms requires user-specified parameters as input, and their clustering results rely heavily on these parameters. Second, many algorithms generate clusters of only spherical shapes. In this paper we try to solve these two problems based on dominant set and cluster expansion. W作者: 啪心兒跳動 時間: 2025-3-30 09:29
Jennifer C. Li BS,Roopal V. Kundu MDobtaining information. The most of current existing friend recommendation methods mainly focus on the preference similarity and common friends between users for improving the recommendation quality. The similar users are likely to have similar preferences of point-of-interests (POIs), the kinds of i作者: Kidney-Failure 時間: 2025-3-30 12:38
Michelle E. Oboite MD,Porcia B. Love MDbeings to positive emotional states are studied in psychology, the effects of these factors vary and change from one person to another. We propose a behaviour recommendation system that recommends the most effective behaviours leading users with a negative mental state (i.e. unhappiness) to a positi作者: 疾馳 時間: 2025-3-30 16:32
Chikoti M. Wheat MD,Ginette A. Okoye MDave been proposed to support personalized POI recommendation in LBSNs. However, most of the existing matrix factorization based methods treat users’ check-in frequencies as ratings in traditional recommender systems and model users’ check-in behaviors using the Gaussian distribution, which is unsuit作者: 公豬 時間: 2025-3-31 00:28
Laura K. Ibeto BS, MS,Porcia B. Love MDn information and/or content information associated with users and items. The interaction information (i.e., feedback) between users and items are widely exploited to build recommendation models. The feedback data in recommender systems usually comes in the form of both explicit feedback (e.g., rati作者: Hormones 時間: 2025-3-31 02:35 作者: 積習已深 時間: 2025-3-31 07:22 作者: 使服水土 時間: 2025-3-31 11:48 作者: Arresting 時間: 2025-3-31 14:05
Turhan Kahraman,Asiye T. Ozdogarrks because they can only deal with one type of link. In this paper, we present our signed network embedding model called SNE. Our SNE adopts the log-bilinear model, uses node representations of all nodes along a given path, and further incorporates two signed-type vectors to capture the positive or